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1. ВВЕДЕНИЕ

Короткие лазерные импульсы с релятивистской
интенсивностью позволяют эффективно ускорять
электроны и ионы плазменной мишени до высо-
ких энергий, что открывает перспективы созда-
ния компактных ускорителей заряженных частиц,
имеющих широкий круг практических примене-
ний [1–4]. Набираемые энергии и количество уско-
ренных частиц определяются помимо параметров
самого лазерного импульса характеристиками ис-
пользуемых мишеней, их структурой и плотно-
стью. Для получения пучков электронов с макси-
мальными энергиями наиболее выгодно исполь-
зовать низкоплотные газы, позволяющие уско-
рять сравнительно небольшие по заряду (типично
на уровне десяток-сотен пикокулон) пучки элек-
тронов до энергий вплоть до 10 ГэВ [5]. Увеличе-
ние числа электронов с высокими энергиями воз-
можно при использовании более плотных мише-
ней с плотностями порядка критической плотно-
сти (для длины волны 1 мкм, критическая плот-
ность составляет 1.1 × 1021 см−3). Именно такие
мишени позволяют добиться рекордных значений
конверсии энергии лазерного излучения в энергию
ускоренных электронов [6, 7]. Вместе с тем созда-
ние мишеней с необходимой оптимальной плот-
ностью и размерами для наиболее эффективного
ускорения электронов (а затем и ионов), все еще
представляется сложной задачей, для решения ко-
торой используются аэрогели, предварительно го-

могенизированные пенные мишени [6], кластер-
ные и структурированные мишени.

Один из наиболее простых способов манипу-
лирования свойствами мишени состоит в созда-
нии протяженной преплазмы на облучаемой сто-
роне мишени наносекундным предымпульсом, ко-
торый предшествует основному короткому импуль-
су, или синхронизированным дополнительным им-
пульсом. Несмотря на высокий контраст совре-
менных лазерных систем (он доходит до значений
∼1010), пиковая интенсивность настолько высо-
ка, что даже при таком контрасте потоки в пре-
дымпульсе оказываются достаточными для форми-
рования плазмы, что может повышать эффектив-
ность ускорения частиц. Иногда оказывается, что
пониженный контраст без значительных измене-
ний пиковых значений интенсивности или опти-
мальная задержка между основным и дополнитель-
ным импульсами [8] приводят к более эффективно-
му плазмообразованию и, соответственно, ускоре-
нию электронов. Существуют экспериментальные
работы, предсказывающие существование опти-
мального градиента на фронте облучаемой мише-
ни для ускорения ионов [9]. Таким образом, плаз-
менный факел, формируемый под действием на-
носекундного импульса/предымпульса, позволяет
более эффективно ускорять заряженные частицы,
и моделирование его образования является необ-
ходимой составной частью оптимизации процесса
ускорения.
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Как правило, разлет мишени под действием
наносекундных лазерных импульсов описывается
в рамках гидродинамического подхода. В этом слу-
чае лазер является внешним источником энергии,
который полностью отвечает за создание плазмен-
ной короны: он формирует и разогревает плаз-
му, повышает в ней давление, градиент которо-
го и вызывает разлет мишени. Несколько физи-
ческих эффектов играют большую роль на этой
стадии: столкновительный теплоперенос, иониза-
ция, а также свойства вещества. В рамках гид-
родинамического подхода последнее описывается
с помощью уравнения состояния и радиационных
свойств веществ (пробегов излучения). При отно-
сительно низких интенсивностях (≲1013 Вт/см2),
которые рассматриваются в данной работе, пере-
нос излучения не играет существенной роли, по-
этому им можно пренебречь. Уравнение состоя-
ния, с другой стороны, является определяющим
при описании динамики разлета мишени. Требует-
ся широкодиапазонное уравнение состояния, так
как вещество при лазерном облучении проходит
через различные состояния. Исходно холодная ми-
шень при комнатной температуре имеет нормаль-
ную твердотельную плотность. Такое состояние со-
храняется для части мишени и после начала ла-
зерного облучения, которое испаряет облучаемую
часть мишени, формируя горячую область низкой
плотности, плазменную лазерную корону, разогре-
ваемую лазерным импульсом, либо тепловым по-
током из области лазерного поглощения. Эта горя-
чая область низкой плотности хорошо описывается
уравнением состояния идеальной плазмы (с учетом
переменной степени ионизации). Соответственно,
присутствует и переходная область, которая име-
ет среднюю плотность и также разогрета. В работе
будут рассмотрены два варианта уравнения состо-
яния: широкодиапазонное и для идеальной плаз-
мы, сравнение результатов расчетов с которыми
позволит показать, к каким неточностям приводит
использование уравнение состояния, применимое
в первую очередь для плазменной короны. Форми-
рование преплазмы от наносекундного импульса,
который затем сменялся пико и фемтосекундны-
ми импульсами, рассматривалось в работах [10, 11]
в одномерном приближении. В данной работе мо-
делирование проводится в RZ-геометрии с симмет-
рией относительно оси распространения лазерно-
го импульса, что позволяет полноценно учитывать
многомерные эффекты гидродинамики.

Помимо свойств веществ на формирование
преплазмы оказывает влияние и эффективность
поглощения лазерного импульса, зависящая от его
интенсивности и длительности. Взаимодействие
лазерного излучения с веществом определяется ди-
электрической проницаемостью, в которой вклады
отдельных эффектов зависят от состояния, в кото-
ром находится вещество. В данной работе рассмат-

ривается наносекундный лазерный импульс с ин-
тенсивностью порядка или более 1012 Вт/см2. При
таких высоких интенсивностях уже на фронте им-
пульса на пикосекундных масштабах происходит
быстрое плазмообразование распространяющейся
тепловой волной, и основное лазерное излучение
взаимодействует с горячей плазменной мишенью,
поглощение в которой определяется обратнотор-
мозным нагревом при столкновениях электронов
с ионами. Конечно, на начальной стадии об-
лучения, когда сохраняется структура вещества,
важен учет и электрон-фононных столкновений
[12, 13], и аккуратное описание переходов между
разными фазами вещества, учитывающее в том
числе возможные метастабильные состояния [14].
Более того, корректное описание диэлектрической
проницаемости в широком диапазоне температур
для разных состояний вещества мишени является
определяющим для моделирования воздействия
на мишень фемтосекундных и даже пикосекунд-
ных лазерных импульсов [15, 16]. Для таких ко-
ротких импульсов могут возникать и дополни-
тельные эффекты, связанные с неравновесным
распределением электронов вследствие ионизации
[17–20], приводящие к особенностям поглощения
лазерного излучения. Однако для рассматриваемо-
го в работе наносекундного лазерного импульса,
основное формирование плазменной короны про-
исходит на временах, превышающих характерные
столкновительные времена, когда электроны и ио-
ны разлетающейся плазмы находятся в равновес-
ных состояниях, а процессы на малых временах
перекрываются по влиянию плазменными процес-
сами. При этом грубая оценка влияния поглоще-
ния на начальной стадии взаимодействия была
сделана путем небольшой модификации частоты
столкновений в модели поглощения при низких
температурах.

Одна из целей данной статьи состоит в срав-
нении динамики разлета мишеней при различных
уравнениях состояния, что позволяет показать
важность учета холодной компоненты уравнения
состояния. В работе проверяется, насколько
различные приближения (одномерность расче-
тов, упрощенное уравнение состояния) влияют
на свойства формирующейся преплазмы. Также
в работе исследовано влияние короткого всплеска
лазерной интенсивности, приходящего на эта-
пе существования развитой плазменной короны,
на ее дальнейшую динамику. Эта простая поста-
новка моделирует эффект быстрого нарастания
интенсивности в фемтосекундных импульсах.

2. МОДЕЛЬ ДЛЯ РАСЧЕТА ФОРМИРОВАНИЯ
ПРЕПЛАЗМЫ

Формирование преплазмы происходит на ха-
рактерных временах теплового разлета плазмы —
порядка нескольких наносекунд. Такие времена
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значительно превышают время столкновений меж-
ду частицами, поэтому динамика может быть опи-
сана гидродинамической моделью. Исключение
составляет происходящий на временах порядка
времени столкновений обмен энергии между элек-
тронами и ионами в низкоплотной среде, поэтому
модель должна учитывать разницу их температур.
Этот эффект усиливается за счет того, что лазерное
излучение разогревает электронную компоненту.
Часть лазерного излучения отражается, оставшая-
ся поглощается и в дальнейшем перераспределяет-
ся с помощью теплового потока, что требует учета
теплопереноса (доминирующим механизмом явля-
ется электронный теплоперенос). Система уравне-
ний имеет вид
𝜕𝑡ρ + 𝜕𝑗(ρ𝑣𝑗) = 0, (1)
𝜕𝑡(ρ𝑣𝑘) + 𝜕𝑗(ρ𝑣𝑘𝑣𝑗) + 𝜕𝑘(𝑝𝑒 + 𝑝𝑖) = 0, (2)

𝜕𝑡(ρ𝑒𝑒) + 𝜕𝑗(ρ𝑣𝑗𝑒𝑒) + 𝑝𝑒𝜕𝑗𝑣𝑗 = 𝑄𝑙𝑎𝑠 + 𝑄𝑒𝑖 − 𝜕𝑗𝑞
(𝑒)

𝑗
, (3)

𝜕𝑡(ρ𝑒𝑖) + 𝜕𝑗(ρ𝑣𝑗𝑒𝑖) + 𝑝𝑖𝜕𝑗𝑣𝑗 = −𝑄𝑒𝑖. (4)
Здесь ρ, 𝑣𝑖 — плотность и скорость среды, 𝑝𝑒,𝑖,
𝑒𝑒,𝑖, 𝑇𝑒,𝑖 — давление, внутренняя энергия и темпе-
ратура электронов (ионов) соответственно; 𝑄𝑙𝑎𝑠 —
лазерное энерговыделение, 𝑄𝑒𝑖 — столкновитель-
ный обмен энергией между электронами и иона-
ми, 𝑞(𝑒) — электронный тепловой поток. Детали
гидродинамической модели можно найти в рабо-
те [21]. В расчетах используется модифицирован-
ная классическая модель теплопроводности с ко-
эффициентом теплопроводности, отвечающим го-
рячей плазме [22], с введением ограничения теп-
лового потока, соответствующего свободному дви-
жению электронов с коэффициентом ограничения
равным 𝑓 = 0.15. Было проверено, что для рассмат-
риваемых параметров коэффициент ограничения
не влияет на полученные результаты. При этом на-
личие теплопроводности важно для переноса энер-
гии из области лазерного поглощения в плотную
область мишени. Коэффициент электрон-ионного
обмена определяется электрон-ионными столкно-
вениями [22]. В области лазерного поглощения
на протяжении всего действия лазерного излуче-
ния (несколько наносекунд) наблюдается отличие
электронной и ионной температуры, поэтому учет
этого эффекта необходим в нашей модели. В об-
ласти с плотностями выше критической плотности
частота столкновений растет (из-за роста плотно-
сти и падения температуры) и температуры элек-
тронов и ионов выравниваются.

Данная система решается в авторском много-
мерном численном коде FRONT, разрабатывае-
мом для задач физики плазмы. Расчеты проводят-
ся на эйлеровой сетке, численная схема для урав-
нений гидродинамики построена на основе схе-
мы годуновского типа. Для учета дополнитель-
ных физических эффектов используется расщеп-
ление по физическим процессам, обменные члены

и теплоперенос рассчитываются с помощью пол-
ностью неявной численной схемы, что позволяет
проводить устойчивые расчеты при любых време-
нах электрон-ионных столкновений и коэффици-
ентах теплопроводности. Код является хорошо рас-
параллеленным, но представленные ниже расчеты
не являются особо ресурсоемкими и требуют около
200 процессорочасов.

В расчетах ниже будем считать, что лазерное
излучение падает на мишень под нормальным уг-
лом, а также пренебрежем эффектами рефракции.
В этом случае задача о распространении излучения
упрощается — лучи движутся по прямой траекто-
рии до критической электронной плотности и по-
том в обратном направлении. Основное энерговы-
деление происходит около критической плотности,
поэтому такое приближение допустимо. Для описа-
ния поглощения и распространения лазерного из-
лучения решается уравнение для интенсивности,
которое интегрируется вдоль траектории луча

𝑑𝐼

𝑑𝑙
= −𝑘𝐼. (5)

Здесь 𝐼 — интенсивность лазерного излучения в лу-
че, 𝑘 — коэффициент поглощения. Первичная
ионизация среды и, соответственно, поглощение
определяется многофотонными процессами и опи-
сывается теорией Келдыша [23]. Однако ионизация
полем происходит на временах меньше несколь-
ких пикосекунд, составляющих малую часть дли-
тельности импульса, и потери лазерного излучения
на ионизацию пренебрежимо малы, что позволя-
ет пренебречь данным эффектом. Основным меха-
низмом поглощения при рассматриваемых интен-
сивностях 1012–1013 Вт/см2 является обратнотор-
мозное поглощение, что определяет вид коэффи-
циента 𝑘 [12, 13, 24], вычисляемого с использова-
нием мнимой части диэлектрической проницаемо-
сти, для которой используется модель Друде.

Рассмотрим особенности уравнений состоя-
ния мишени. Из-за двухтемпературной модели для
электронов и ионов требуется свое уравнение со-
стояния. Сначала рассмотрим наиболее простой
вариант уравнения состояния — идеальную плазму
с переменным зарядовым составом. В этом случае
давление пропорционально концентрации частиц
каждого типа

𝑝𝑒 = 𝑛𝑒𝑘𝐵𝑇𝑒, 𝑝𝑖 = 𝑛𝑖𝑘𝐵𝑇𝑖. (6)

Согласно уравнениям (2)–(4), движение среды
определяется градиентом полного давления, а от-
дельные компоненты давления необходимы для
расчетов изменения внутренней энергии соответ-
ствующей компоненты. Плотность энергии в слу-
чае идеальной плазмы имеет вид: ρ𝑒𝑒 = 1.5𝑛𝑒𝑘𝐵𝑇𝑒,
ρ𝑒𝑖 = 1.5𝑛𝑖𝑘𝐵𝑇𝑖. Основные ионизационные процес-
сы в рассматриваемых условиях связаны со столк-
новениями, поэтому ионизационное равновесие
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описывается уравнением Саха [25]. Полная ионная
концентрация имеет вид

𝑛𝑖 =∑
α

𝑍α,max

∑
β=0

𝑛α,β, (7)

где 𝑛α,β — концентрация ионов с зарядом β элемен-
та типа α (𝑍α,max — заряд ядра элемента), а сумма
берется по всем элементам и зарядам ионов. Элек-
тронная концентрация записывается в виде

𝑛𝑒 =∑
α

𝑍α,max

∑
β=1

β 𝑛α,β. (8)

Как указывалось выше, такое уравнение состоя-
ния хорошо работает для плазмы низкой плот-
ности, т. е. с плотностью значительно ниже твер-
дотельной ρ0 для данного вещества (у алюминия
ρ0 = 2.7 г/см3). В то же время оно не позволяет опи-
сать особенности поведения вещества около ρ0, что
приводит к ошибочной динамике твердотельной
мишени.

Для построения уравнения состояния, которое
применимо как к твердотельной фазе, так и к низ-
коплотной короне, воспользуемся подходом, пред-
ложенным в работе [26]. Электронная компонен-
та описывается с помощью модели Томаса–Ферми,
которая учитывает вырождение электронов при
высокой плотности, а также переходит в модель
идеальной плазмы при низкой плотности и высо-
кой температуре. Ионизационное состояние рас-
считывается в этой модели согласованно с ре-
шением задачи о распределении электронов. Его
значение близко к значению, которое выдает мо-
дель Саха. Для ионной компоненты используется
модель Кована, которая предлагает интерполяци-
онные выражения для свободной энергии ионов
с учетом трех фаз: твердотельной, жидкой и газо-
вой. Переход между этими фазами задается с помо-
щью температуры плавления и температуры Дебая,
для которых также представлены эмпирические за-
висимости от плотности. Ионное давление не зави-
сит от ионизационного состояния, поэтому такая
интерполяция достаточна. Эти две модели допол-
няются полуэмпирической поправкой на энергию
связи, что позволяет получить атмосферное давле-
ние при нормальной плотности вещества и комнат-
ной температуре. Поправка определяется модулем
объемного сжатия при нормальных условиях. Такая
модель хорошо описывает ударноволновое сжатие
веществ, что подтверждается сравнением с экспе-
риментальными данными. Кроме этого, при низ-
ких плотностях и высоких температурах она пред-
сказывает результаты близкие к модели идеальной
плазмы с переменной ионизацией (рис. 1), поэтому
должна корректно описывать и расширение плаз-
мы при высокой температуре (что происходит при
лазерном облучении). Данное уравнение состоя-
ния численно реализовано в виде модуля к гид-
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Рис. 1. Сравнение изотерм полного давления для урав-
нения состояния QEOS (сплошные кривые) и идеаль-
ной плазмы (штриховые кривые) для алюминия.

родинамическому коду. С его помощью насчиты-
ваются табличные данные, которые потом приме-
няются в расчетах. Для построения уравнения со-
стояния алюминия используются следующие па-
раметры: 𝑍 = 13, 𝐴 = 26.98, нормальная плотность
вещества ρ0 = 2.7 г/см3, модуль объемного сжатия
𝐵 = 76 ГПа. Такое уравнение состояния с учетом
эффектов вырождения будет основным в расчетах
(назовем его, как и авторы статьи [26], QEOS). Изо-
термы полного давления для такой модели в срав-
нении с моделью идеальной плазмы представлены
на рис. 1.

3. РАСЧЕТЫ ДИНАМИКИ МИШЕНИ ПОД
ДЕЙСТВИЕМ НАНОСЕКУНДНОГО

ЛАЗЕРНОГО ИМПУЛЬСА
Рассмотрим разлет алюминиевой пластины

толщиной ℎ = 6 мкм, которая облучается ла-
зерным импульсом с постоянной по времени
интенсивностью (рис. 2). Характерное время на-
растания интенсивности в расчетах составляет
20 пс, и она выходит на плато к моменту време-
ни 100 пс. Длительность импульса во всех расчетах
τ = 3 нс. Лазерное излучение падает по нормали
к поверхности мишени. Из-за симметрии задачи
расчет проводится в цилиндрической геомет-
рии 𝑅𝑍 (с симметрией по углу φ), что позволяет
полноценно учесть трехмерный разлет плазмы.

Определим как 𝑍 ось, вдоль которой распро-
страняется лазерное излучение. Так как мы рас-
сматриваем динамику, которую создает предым-
пульс остросфокусированного короткого импуль-
са, то радиус фокусировки предымпульса остает-
ся таким же малым. Таким образом, простран-
ственный профиль входящего лазерного импульса
зададим как

𝐼(𝑟) = 𝐼0 exp
⎛

⎝
−
𝑟2

𝑟2
𝑙

⎞

⎠
, 𝑟2 = 𝑥2 + 𝑦2. (9)
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Рис. 2. Геометрия расчета и временной профиль лазерного импульса.

Здесь 𝐼0 — интенсивность в центре импульса, 𝑟𝑙 —
радиус фокусировки, в расчетах будем использо-
вать значение 𝑟𝑙 = 4 мкм. Используемый численный
код не позволяет работать с вакуумными состояни-
ями, поэтому область вокруг мишени заполняется
веществом с низкой плотностью ρ𝑙𝑜𝑤 = 10−5 г/см3

(с таким же уравнением состояния, как и ис-
пользуется для описания мишени). Эта величи-
на достаточна мала, чтобы ее значение не влияло
на дальнейшую динамику системы. В начальный
момент времени во всей расчетной области задает-
ся нормальное однородное давление (1 атм), что со-
ответствует для нормальной плотности алюминия
комнатной начальной температуре для используе-
мого уравнения состояния QEOS.

Согласно модели Томаса–Ферми, средний за-
ряд алюминия при нормальных условиях состав-
ляет 𝑍 = 2.4. При таком среднем заряде формально
концентрация электронов получается выше крити-
ческой, что приводит к поглощению лазерного из-
лучения через обратнотормозной механизм на пе-
редней поверхности мишени. Разогретое на грани-
це вещество быстро превращается в плазму и разле-
тается от мишени, формируя плазменную корону.

За времена порядка 100 пс, когда на мишень
приходит максимальная интенсивность облучае-
мого лазерного импульса, температура в области
поглощения поднимается до ∼100 эВ (для интен-
сивности наносекундного импульса 1012 Вт/см2

время нагрева до 100 эВ составляет 150 пс, а для
интенсивности 1013 Вт/см2 — 90 пс). Именно
эта температура определяет характерную ско-
рость разлета короны формируемой плазмы,
2𝑐𝑠/(𝛾 − 1) ∼100 км/с, где 𝑐𝑠 — скорость звука в ко-
роне, пропорциональная корню из температуры
𝑐𝑠 ∝ 𝑇1/2. Заметим, что после выхода интенсивно-
сти падающего излучения на плато, температура
меняется слабо. За времена порядка 300 пс горячая
плазма успевает разлететься навстречу лазерному

импульсу, заполняя практически всю расчетную
область. Отметим, что полученная в расчетах гид-
родинамическая скорость разлета оказывается
значительно меньше скорости разлета бесстолк-
новительной плазмы в вакуум [27], согласно
которой скорость фронта разлетающегося факе-
ла растет со временем, 𝑣𝑓 ≃ 2𝑐𝑠 ln(τ +

√
τ2 + 1), где

τ = ω𝑝ℎ𝑡/
√

2𝑒 и для параметров моделирования
𝑣𝑓 ∼1500 км/с.

В обратную сторону, вглубь мишени, идет теп-
ловая волна, которая формирует ударную вол-
ну. При рассматриваемых интенсивностях первая
ударная волна, которая бежит по мишени, относи-
тельно слабая (при 𝐼 = 1012 Вт/см2 скорость волны
𝐷 = 7.5 км/с, что согласуется с соотношениями Гю-
гонио для абляционного давления ∼330 кбар). Эта
волна, бегущая со скоростью, сравнимой со скоро-
стью звука в холодном металле, разгоняет вещество
пластины. В результате в области лазерного по-
глощения пластина начинает смещаться (рис. 3, 4).
На распределениях плотности хорошо видна серия
слабых ударных волн, которые распространяются
вдоль пластины в дальнейшем (рис. 5).

Разлетевшаяся горячая плазма заполняет про-
странство вокруг мишени с лицевой стороны
(со стороны падающего лазерного импульса).
Максимальная температура в несколько сотен эВ
наблюдается около области лазерного поглоще-
ния, вынос энергии вместе с веществом или за счет
теплопереноса поддерживает температуру в плаз-
менной короне. Тепловой поток также существует
в направлении плотной области мишени, но из-за
высокой теплоемкости плотные части мишени
остаются относительно холодными.

В дальнейшем разогнанное вещество пла-
стины в области около лазерного поглощения
будет продолжать свое движение, мишень посте-
пенно утончается и в итоге происходит прорыв
пластины (рис. 4). Характерное время полного
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с 𝐼0 = 1013 Вт/см2. Момент времени 𝑡 = 2 нс.
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Рис. 4. Динамика пластины при облучении импульсом с постоянной интенсивностью 1013 Вт/см2.
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Рис. 5. Увеличенная часть пластины с рис. 4, на которой явно видны волны, бегущие по ней (𝐼 = 1013 Вт/см2).

прогорания мишени при длительности лазер-
ного импульса τ = 3 нс и для интенсивности
𝐼 = 1012 Вт/см2 составляет 𝑡𝑝 = 15 нс, для ин-
тенсивности 𝐼 = 1013 Вт/см2 — 𝑡𝑝 = 6 нс, а для
интенсивности 𝐼 = 5 × 1013 Вт/см2 — 𝑡𝑝 = 3.5 нс.

Следует отметить, что описанная динамика
пластины возможна только за счет присутствия
в уравнении состояния холодной составляющей,
которая позволяет поддерживать упругость плот-
ной среды. Это хорошо видно при сравнении про-
веденных расчетов с расчетами с другим уравне-
нием состояния — идеальной плазмой, которое
не содержит вырождения. В уравнении состояния
идеальной плазмы из-за отсутствия холодной ча-
сти скорость звука в среде определяется темпера-

турой 𝑐𝑠 ∝ 𝑇1/2. В плотной среде в начальный мо-
мент времени начальная низкая температура ми-
шени 𝑇0 = 10−2 эВ дает скорость звука ∼200 м/c,
что значительно ниже, чем скорость звука в холод-
ном алюминии при нормальной плотности. Ско-
рость звука характеризует скорость распростране-
ния малых возмущений в такой среде. В результа-
те в расчетах пластина цельно не смещается, как
показано выше, а сгребается первой ударной вол-
ной, распространяющейся от точки энерговыделе-
ния (рис. 6).

Вместе с тем, стоит отметить, что парамет-
ры низкоплотной области — лазерной короны для
обоих уравнений состояния очень близки друг
к другу. На рис. 7 представлено сравнение про-
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Рис. 6. Распределение плотности (в г/см3) и температуры (в эВ) в мишени при расчете с уравнением состояния иде-
альной плазмы при 𝐼0 = 1013 Вт/см2. Момент времени 𝑡 = 2 нс.
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филей электронной концентрации и температуры
вдоль прямой 𝑟 = 0 (по центру лазерного луча) для
двух уравнений состояния на момент времени 2 нс.
Видно, что профили 𝑛𝑒 и 𝑇𝑒 в низкоплотной об-
ласти близки для обоих расчетов. Определим гра-
диент плотности как Γ = 𝑛−1

𝑒 𝑑𝑛𝑒/𝑑𝑧. Для расчета
с уравнением состояния QEOS ΓQEOS = 2.5 мкм−1,
а для расчета с уравнением состояния идеальной
плазмы ΓIP = 3.1 мкм−1, что дает различие в ∼20%.
Полученное согласие объясняется тем, что профи-
ли в низкоплотной области определяются только
свойствами вещества при таких состояниях и вели-
чиной энерговыделения. Более заметная разница
возникает для положения критической плотности,
которая пространственно смещена на несколько
микрон вглубь мишени при использовании урав-
нения состояния идеального газа. Положение кри-
тической области важно для определения точки
фокусировки короткого лазерного импульса, так
как от этого зависит эффективность ускорения ча-
стиц. При этом в целом, если интересоваться толь-
ко свойствами лазерной короны, уравнение состо-
яния идеальной плазмы является достаточным.

Для более детального описания динамики рас-
смотрим поведение давления (рис. 7). Оно в обла-
сти низкоплотной короны совпадает для обоих рас-
четов (с точностью до смещения, что согласуется
с поведением плотности). В области высокой плот-
ности плазмы различие в поведении давления объ-
ясняет разницу в динамике мишени. Для уравне-
ния состояния идеальной плазмы пиковое значе-
ние давления находятся на границе с плотной плаз-
мой, а внутри слоя давление падает. Такая конфи-
гурация приводит к эффекту сгребания вещества.
Для второго уравнения состояния (с вырождением)
максимальное значение давления находится в об-
ласти высокой плотности и связано с ударной вол-
ной, которая прошла по среде, сжала, а также уско-
рила мишень. Следует отметить две точки, в ко-

торых давление уходит в отрицательные значения.
Эти точки находятся в области перехода из плотной
среды в низкоплотную при невысоких температу-
рах: в этом случае состояние среды находится в об-
ласти немонотонного поведения давления по пред-
сказаниям QEOS (см. рис. 1). Эта область требу-
ет более физически сложной модели для постро-
ения уравнения состояния. Малый объем в про-
странстве, который занимают области с таким со-
стоянием вещества, не влияет на крупномасштаб-
ную динамику мишени, но наличие этих областей
указывает на необходимость дальнейшей доработ-
ки уравнения состояния.

На рис. 8 показано сравнение формы мишени
в результате облучения импульсами разной интен-
сивности и одинакового радиуса фокусировки 𝑟0.
Из-за разницы температуры в короне и, соответ-
ственно, давления смещение пластины оказыва-
ется различным, как и радиус формирующегося
отверстия в пластине. Хорошо видно, что при боль-
ших интенсивностях мишень прогибается, и в ре-
зультате на течение начинают влиять плотные об-
ласти, которые окружают расширяющуюся плазму.
Этот эффект нельзя учесть в рамках одномерного
приближения, что демонстрирует важность учета
трехмерного разлета, особенно в условиях малого
радиуса фокусировки лазерного импульса.

Заметим, что более простые одномерные расче-
ты зачастую используются, чтобы оценить разме-
ры и характерные градиенты температуры разлета-
ющегося плазменного облака, иногда, с привлече-
нием приближенных перенормировок для расши-
рения плазменного облака в поперечных направ-
лениях, например, с использованием дополнитель-
ного динамического уравнения [28].

Рисунок 9 демонстрирует сравнение профи-
лей электронной концентрации и температуры для
трехмерных (𝑅𝑍) и одномерных (1D) расчетов. Раз-
ница особенно заметна по профилям электрон-
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ной концентрации. В одномерном расчете корона
является сильно вытянутой с пологим градиентом
(для 𝐼0 = 1012 Вт/см2 градиент Γ1D = 0.2 мкм−1, что
на порядок ниже, чем в 𝑅𝑍-расчете). В трехмер-
ном (𝑅𝑍) расчете хорошо видно наличие несколь-
ких характерных градиентов — при плотностях
несколько единиц выше критической, около кри-
тической плотности и в низкоплотной плазменной
короне. Также значительно различаются смещения
пластины: в одномерном случае пластина смешает-
ся в разы сильнее.

Используемая в расчетах модель обратнотор-
мозного поглощения не совсем корректно опи-
сывает поведение поглощения при низких темпе-
ратурах. Коэффициент поглощения определяется
через мнимую часть диэлектрической проницае-
мости плазмы, 𝑘 = 2ω𝑙Im

√
ε/𝑐 (здесь ω𝑙 — частота

лазерного излучения) и оказывается пропорциона-
лен эффективной частоте столкновений. Для ис-
пользуемой в коде плазменной модели электрон-
ионных столкновений частота столкновений рас-
тет при уменьшении температуры, ν𝑒𝑖 ∝ 𝑇

−3/2
𝑒 , что

приводит также к некорректному росту погло-

щения при малой температуре [29]. В качестве
простого теста того, насколько такое усиленное
поглощение играет роль, воспользуемся простой
модификацией представленной модели: при вы-
числении электрон-ионной частоты температуру
ограничим снизу температурой Ферми для ве-
щества: ν𝑒𝑖 = ν𝑒𝑖(max(𝑇𝐹, 𝑇𝑒)). Для алюминия нор-
мальной плотности получаем (с учетом использу-
емого уравнения состояния, которое выдает ве-
личину 𝑛𝑒) 𝑇𝐹 = ℎ̵

2(3π𝑛𝑒)2/3/(2𝑚𝑒𝑘𝐵) = 4.7 эВ. Рас-
чет с таким ограничением частоты столкновений
приводит к задержке роста температуры короны,
но на очень малых временах ≲50 пс, когда темпе-
ратура плазмы 𝑇 ∼ 1 эВ. При росте температуры
до десятков эВ (на временах∼100 пс) разница меж-
ду расчетами исчезает. Таким образом, коррект-
ный коэффициент поглощения на начальном этапе
взаимодействия оказывает незначительное влия-
ние на дальнейшую динамику мишени при рас-
сматриваемых потоках энергии. Отчасти это связа-
но с тем, что процессы плазмообразования проис-
ходят при малых лазерных интенсивностях по срав-
нению с пиковыми и затрагивают только малую
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часть энергии импульса, в то время как динами-
ка самой мишени и лазерной короны определяет-
ся уже последующими стадиями взаимодействия,
на которых в мишень попадает значительная часть
энергии лазерного импульса.

Рассмотрим влияние на динамику мишени ко-
роткого всплеска интенсивности пикосекундного
масштаба на фоне постоянного наносекундного
импульса. Такие всплески наблюдаются в предым-
пульсе некоторых лазерных систем [30], а также
описывают нарастание интенсивности на пикосе-
кундном масштабе перед приходом фемтосекунд-
ного импульса [31].

Будем считать, что пикосекундный импульс
имеет гауссов временной профиль с характер-
ным масштабом 𝑡1 = 2 пс и интенсивность 𝐼1 =

= 1015 Вт/см2, а интенсивность наносекундно-
го импульса, длительностью τ0 = 3 нс, составляет
𝐼0 = 1012 Вт/см2. Центр короткого пикосекундного

импульса находится на 2 нс после начала длинного
импульса (рис. 10а). Таким образом, энергия ко-
роткого импульса в ∼ 𝐼1τ1/𝐼0τ0 ≈ 7 раз превышает
энергию наносекундного импульса, и он оказывает
значительное влияние на динамику мишени.

Результаты расчетов с таким импульсом пред-
ставлены на рис. 10б и на рис. 11. По резуль-
татам видно, что на момент прихода максиму-
ма пикосекундного импульса, 𝑡 = 2 нс, короткий
импульс успевает значительно разогреть плазму
и поменять градиент электронной плотности око-
ло критики: происходит укручение профиля и гра-
диент Γ меняется в течении короткого времени
с 2.5 мкм−1 до 3.2 мкм−1. Сама мишень (более
плотная ее часть) не успевает отреагировать на ко-
роткий импульс на пикосекундных временах. Так-
же практически не меняется и градиент низко-
плотной части плазменного факела. Таким обра-
зом, пикосекундный предымпульс слабо влияет

1012

I,
 В

т/
см

2

1010

1011

1015

1013

1014

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t, нс

40

20

0

‒20

‒40

z,
 м

км

5040302010
r, мкм

2.5

2.0

1.5

1.0

0.5

ρ, I = 1012 Вт/см2 + Ips, t = 3 нс

(а)

(б)

Рис. 10. Временной профиль лазерного импульса с пикосекундным всплеском величиной 𝐼1 = 1015 Вт/см2 на фоне
𝐼0 = 1012 Вт/см2 и характерной длительностью 𝜏1 = 2 пс (а). Распределение плотности мишени после воздействия
импульса в момент времени 3 нс (б).

102

101

100

10‒1

10‒2

n e
/n

c

102

101

100

10‒1

10‒2

n e
/n

c

102

101

100

10‒1

10‒4

10‒3

10‒2n e
/n

c

102

101

100

10‒1

103

10‒2

T,
 э

В

102

101

100

10‒1

10‒2

T,
 э

В

p e
 +

 p
i, 

М
ба

р

z, мкм

0.15

0.10

0.05

0.00

‒0.05

‒0.10

10.07.55.02.50.0‒2.5
z, мкмz, мкм

10.07.55.02.50.0‒2.515.012.510.07.55.02.50.0

ns
ns + ps

ns
ns + ps

ns
ns + ps

(а) (б) (в)

Рис. 11. Распределение электронной концентрации (в критических𝑛𝑐, сплошные кривые) и температуры (в эВ, штри-
ховые кривые) вдоль прямой 𝑟 = 0. Расчеты с 𝐼0 = 1012 Вт/см2 (ns), и расчет с 𝐼0 = 1012 Вт/см2 и пиковым значением
𝐼1 = 1015 Вт/см2 в фемтосекундном импульсе (ns+ps). Моменты времени 2 нс (а) и 3 нс (б). Показаны распределения
электронной концентрации (сплошные кривые) и давления (штриховые кривые) на момент 3 нс для этого расчета (в).

ФИЗИКА ПЛАЗМЫ ТОМ 51 № 1 2025



74 ГЛАЗЫРИН и др.

на характеристики плотности мишени, лишь из-
меняя характерный градиент вблизи критической
плотности. В то же время наличие такого отно-
сительно мощного всплеска интенсивности в пре-
дымпульсе может существенно менять параметры
разлетающейся плазмы на более поздних временах,
приводя к всплеску плотности в плазменной ко-
роне (см. рис. 11в). Кроме того, быстрое высажива-
ние энергии и сопровождающий ее разогрев плаз-
мы приводят к эффекту удара, в результате кото-
рого по мишени в дальнейшем распространяется
сильная ударная волна, которая приводит к разру-
шению задней границы пластины, (см. рис. 10б).
Следует отметить, что наблюдаемое разрушение
происходит из-за сильной волны разрежения, ко-
торая возникает после отражения ударной волны
от границы. Это видно на профилях давления, ко-
торые показаны на рис. 11, — возникает обшир-
ная область с отрицательным давлением. Посколь-
ку в расчетах не использовалась модель разрушения
или упругопластики, наблюдаемый эффект связан
с поведением уравнения состояния. Поэтому дан-
ный результат является скорее указанием на воз-
можное разрушение, и более детальное исследова-
ние этого процесса требует проведения расчетов
с более точными моделями уравнения состояния,
а также учета прочностных свойств веществ.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
И ЗАКЛЮЧЕНИЕ

В работе рассматривается процесс формиро-
вания лазерной короны при облучении метал-
лической (алюминиевой) мишени импульсами
наносекундной длительности и интенсивностями
1012–5 × 1013 Вт/см2. Интерес к таким расчетам
связан с необходимостью корректно получать
параметры плазмы, возникающей перед приходом
мощного фемтосекундного импульса, а также
возможностью контролировать параметры этой
плазмы. Представлена физическая модель, необ-

ходимая для таких расчетов, а также обсуждаются
основные эффекты, сопровождающие формиро-
вание плазмы при различных лазерных интен-
сивностях. В частности, рассмотрено влияние
на расчеты двух уравнений состояния. Уравнение
состояния идеальной плазмы с переменной
ионизацией подходит для описания низкоплотной
области плазменной кроны, в которой расчеты
с его помощью согласуются с результатами расчетов
с использованием широкодиапазонного уравнения
состояния. Таким образом, если интересоваться
только свойствами низкоплотной короны, при-
менение такого уравнения состояния является
оправданным. Для корректного описания динами-
ки плотной части мишени, а также ее смещения,
требуются уже уравнения состояния, которые учи-
тывают эффект вырождения электронов и связи
между атомами при высокой плотности вещества.
Также показано, что в рамках одномерной модели
получаются ошибочные градиенты электронной
плотности в области критической плотности: из-за
эффектов бокового расширения плазмы градиенты
становятся более крутыми. Особенно это важно
в случае малого радиуса фокусировки, что как раз
соответствует предымпульсу коротких лазерных
систем. Представленная модель позволяет считать
динамику тонких пластин, их прогиба и смеще-
ния, что важно учитывать при фокусировании
лазерного излучения.

Предсказываемые проведенными гидроди-
намическими расчетами профили плотности
преплазмы мишени представлены на двух гра-
фиках (рис. 12): вдоль оси 𝑍 (𝑟 = 0) и вдоль оси 𝑅
(𝑧 = 11 мкм, т. е. вдоль луча, который на 5 мкм
отстоит от исходной поверхности пластины).
Из них видно, что характерный градиент в области
критической электронной плотности состав-
ляет Γ = 2.5 мкм−1 и имеет слабую зависимость
от интенсивности и времени облучения. Большая
разница наблюдается при плотностях, в несколько
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единиц превышающих критическую (1–10𝑛𝑐):
чем больше интенсивность, тем более развитая
корона получается и более пологий профиль плот-
ности формируется в этой области. Характерный
градиент в области низкоплотной короны (при
плотностях от 0.05𝑛𝑐 до 0.5𝑛𝑐) меняется от 0.03
до 0.13 мкм−1. Таким образом, формируемый
продольный профиль плотности преплазмы имеет
довольно резкий градиент в области критической
плотности и протяженную преплазму, начинающу-
юся от характерной плотности 0.3–0.4𝑛𝑐, величина
которой спадает на порядок за 10–15 мкм. Это
говорит о довольно ограниченных возможностях
управления параметрами преплазмы с исполь-
зованием предымпульса спонтанного усиления
эмиссии основного мощного короткого импульса,
поскольку в этом случае при фиксированной
задержке можно использовать только продольный
профиль преплазмы, немного меняющийся
в зависимости от интенсивности предымпульса.

Значительно больше возможностей управления
параметрами плазменной мишени возникает при
использовании независимого наносекундного
импульса, особенно при возможности фоку-
сировки основного импульса, используемого
для ускорения электронов, под разными углами
к мишени, и, в частности, почти параллельно
разлетающейся мишени. В этом случае импульс
может распространяться вдоль поперечного
профиля формируемой преплазмы (𝑧 = const),
электронная плотность которого растет вместе
с интенсивностью наносекундного импульса.
При этом, близко к оси мишени концентрация
оказывается практически постоянной на уровне

0.3–0.4𝑛𝑐, при удалении по радиусу начинает
сначала расти, достигая нескольких критических
плотностей, а дальше рост сменяется падением.
Немонотонность этих профилей плотности (мак-
симум в районе 15–20 мкм от оси фокусировки)
связана с поперечными особенностями разлета ми-
шени: вне радиуса лазерного облучения вещество
нагребается в выступ, возникающий на лицевой
стороне (рис. 8). Таким образом, при достаточно
больших интенсивностях наносекундного импуль-
са (≳ 5 × 1013 Вт/см2) перед облучаемой частью
мишени на некотором расстоянии от центра фо-
кусировки возникает область околокритической
плотности, протяженностью в 5–10 мкм, которая
может использоваться для более эффективного
ускорения электронов. Также представляется
возможным использование поперечного профиля
плазмы за прогоревшей мишенью для эффектив-
ного ускорения электронов. На рис. 13 показаны
поперечные профили концентрации 𝑛𝑒 за пласти-
ной на момент времени около и после прорыва
пластины. Видно, что плотность электронов
падает со временем и составляет доли критической
плотности. При этом на более ранние моменты
времени плотность в центральной части будет
выше (порядка критической), но будет ограничена
“стенками” от разлетающейся мишени. Таким
образом, меняя задержку между дополнительным
наносекундным и основным фемтосекундным
лазерными импульсами, можно добиться взаи-
модействия последнего с наиболее оптимальным
профилем плазменной мишени. Например, при
облучении алюминиевой мишени толщиной 6 мкм
наносекундным импульсом (длительностью 3 нс)
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Рис. 13. Распределение плотности на момент 𝑡 = 4 для 𝐼 = 1014 Вт/см2 (а), показан луч, вдоль которого строятся
одномерные профили. Одномерные профили электронной концентрации для двух вариантов интенсивности и времен
после прорыва пластины вдоль 𝑧 = −20 мкм (б).
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с интенсивностью 1014 Вт/см2, сфокусированного
в пятно размером 4 мкм, через 4 нс после его при-
хода на мишень за задней стенкой прогоревшей
мишени вблизи пятна фокусировки возникает
однородная плазма с плотностью порядка 0.2𝑛𝑐
и размером порядка 100 мкм, которая является
оптимальной для ускорения электронов в режиме
самозахвата релятивистского лазерного импульса
длительностью 10 фс с энергией порядка 2 Дж [7].
Учитывая, что характерные времена существенно-
го изменения профиля плотности разлетающейся
плазмы составляют сотни пикосекунд, возмож-
но обеспечить необходимую синхронизацию
наносекундного импульса, создающего плазму
с заданным профилем, с фемтосекундным ла-
зерным импульсом, для наиболее эффективного
ускорения электронов.

Исследование выполнено за счет гранта Рос-
сийского научного фонда № 24-22-00119, https://
rscf.ru/project/24-22-00119/.
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FORMATION OF LASER PRE-PLASMA FOR CONTROLLING
THE PARTICLE-ACCELERATION EFFICIENCY

S. I. Glazyrin𝒂,𝒃,∗, M. A. Rakitina𝒂, and A. V. Brantov𝒂,𝒃
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Nanosecond laser ablation is simulated aiming at characterization of the plasma plume at an irradiated
target surface and analysis of the possibility of using such a plume for efficient acceleration of charged
particles by a high-power short laser pulse. The effect of using different physical models in the hydrodynamic
calculations on the results of simulation is demonstrated.

Keywords: particle acceleration, pre-plasma, hydrodynamic modeling, equations of state
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