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явные формулы, справедливые для солитонов произвольной амплитуды. Показано, что солитоны
формируют в своей окрестности сильно неравновесную плазму. Проведено сравнение результатов
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1. ВВЕДЕНИЕ

Анализ влияния плазменных волн на функ-
ции распределения ее заряженных частиц важен
как с фундаментальной, так и с прикладной точек
зрения [1–4]. Для плазменных солитонов акусти-
ческого типа данная проблема обсуждалась в ра-
ботах [5–10]. Как известно, ионно-звуковыми со-
литонами называют устойчивые уединенные вол-
ны сжатия или разрежения ионной плотности,
распространяющиеся в пространстве без измене-
ний формы [11–15]. В работе [5] задача решалась
в рамках уравнений Власова (что является наи-
более общим подходом), результаты были получе-
ны в приближении малых амплитуд, функции рас-
пределения по скоростям для заряженных частиц
использовались в качестве промежуточных расче-
тов и их свойства не анализировались специаль-
но. В работах [6, 8–10] возмущенные солитона-
ми функции распределения по скоростям и энер-
гиям исследовались целенаправленно для плазмы
с холодными ионами. Начальная (невозмущенная)
скорость всех ионов в данном случае была рав-
на нулю. Солитоны возмущают ионную скорость
в своей окрестности. Зная профиль солитона, все
параметры движения любого иона можно рассчи-
тать в любой момент времени, что делает исследуе-
мую задачу детерминированной (в отличие от сто-
хастической задачи теплых ионов). Для случая хо-

лодных ионов вместо уравнений Власова можно
использовать уравнения гидродинамики и одноча-
стичное приближение. В расчетах [6–10] исполь-
зовалось как усреднение по ансамблю частиц (пу-
тем численного моделирования), так и усреднение
по времени для одной частицы с использовани-
ем эргодической гипотезы. Во втором случае бы-
ли получены явные формулы для описания возму-
щенных функций распределения. Тем не менее по-
лученные выражения требовали либо применения
численных методов, либо были справедливы для
солитонов малых амплитуд. Полученные результа-
ты показали, что ионная функция распределения
по компонентам (проекциям) скорости (изначаль-
но равновесная), возмущенная солитонами сжа-
тия, имеет несимметричную неравновесную фор-
му в окрестности волны. Как оказалось, форма воз-
мущенной функции распределения подобна функ-
ции распределения плазмы с пучком ионов. Ин-
теграл функции распределения по компонентам
скоростей оказался отличным от нуля, что ука-
зывает на односторонний перенос ионов ионно-
звуковыми солитонами. Последнее следствие пол-
ностью согласуется с результатами [16–20]. В ука-
занных работах различными способами показано,
что консервативные плазменные солитоны сжатия
осуществляют односторонний перенос заряжен-
ных частиц на конечное расстояние в направлении
своего движения.
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В предлагаемой работе, с использованием
усреднения по времени (на основе эргодической
гипотезы), получены аналитические формулы для
описания возмущенных солитонами функций
распределения по скоростям и по энергиям,
которые справедливы для произвольных амплитуд.
Построены графики рассчитанных функций
для солитонов разной амплитуды. Проведено
сравнение полученных аналитических выражений
с приближенными выражениями, справедливыми
для малых амплитуд, а также с результатами
численного моделирования. Рассмотрены только
ионные функции распределения, в то время как
электроны полагались равновесными (Больцма-
новскими).

2. ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ
Для проверки наших результатов будем поль-

зоваться сравнением с уже известными результата-
ми [6, 8, 9]. Рассмотрим классическую одномерную
гидродинамическую модель бесстолкновительной
плазмы, содержащей холодные ионы 𝑇𝑖 = 0 и го-
рячие равновесные электроны с температурой 𝑇𝑒
𝑇𝑖. Будем полагать, что магнитное поле отсутству-
ет или параллельно направлению движения волн.
Систему гидродинамических уравнений запишем
в виде

𝜕𝑣𝑖

𝜕𝑡
+ 𝑣𝑖

𝜕𝑣𝑖

𝜕𝑋
= −

𝜕Φ

𝜕𝑋
, (1)

𝜕𝑁

𝜕𝑡
+
𝜕𝑁𝑖𝑣𝑖

𝜕𝑋
= 0, (2)

𝑁𝑒 = exp(Φ), (3)

𝜕2Φ

𝜕𝑋2 = 𝑁𝑒 − 𝑁𝑖. (4)

Здесь 𝑁𝑖, 𝑁𝑒 — обозначают ионную и электрон-
ную концентрации с нормировкой на невозмущен-
ную ионную (электронную) концентрацию 𝑛0 =
= 𝑛0𝑖 = 𝑛0𝑒; 𝑣𝑖 — гидродинамическая ионная ско-
рость с нормировкой на ионно-звуковую скорость
𝐶𝑠 =

√
𝑇𝑒/𝑚𝑖, 𝑚𝑖 — масса иона; Φ = 𝑒φ/𝑇𝑒 — нор-

мированный электростатический потенциал вол-
ны, 𝑒 — абсолютный заряд электрона, φ — размер-
ный потенциал, который можно описать извест-
ным выражением 𝐸 = −𝜕φ/𝜕𝑥 для электрического
поля. Временная и пространственная координа-
ты 𝑡, 𝑋 нормированы соответственно на ω−1

𝑖
(где

ω𝑖 =
√

4π𝑛0𝑒
2/𝑚𝑖 — ионная плазменная частота)

и на λ𝐷, где λ𝐷 =
√
𝑇𝑒/4π𝑒2𝑛0 — радиус Дебая.

Система уравнений (1)–(4) содержит солитон-
ные решения, которые можно найти различными
способами. Для малых амплитуд ее можно опи-
сать уравнением КдВ [21, 22], при этом профиль
ионно-звукового солитона выражается следующим
образом:

Φ(𝑥, 𝑡) = Φ0 sech2 (
𝑋 −𝑀𝑡

Δ
) , (5)

где Φ0 = 3(𝑀 − 1) — амплитуда солитона, а Δ =

=
√

6/Φ0 — его ширина, 𝑀 = 𝑉/𝐶𝑠 — число Маха,
𝑉 — скорость солитона в неподвижной системе ко-
ординат. В работе [9] с использованием уравне-
ния (5) была получена явная формула для описа-
ния ионной функции распределения по скоростям
в окрестности ионно-звукового солитона сжатия,
которая имеет следующий вид:

𝑓(𝑣𝑖) =
4
√

3
𝑇𝑣𝑖(2𝑀 − 𝑣𝑖)

√
6(𝑀 − 1) − 𝑣𝑖(2𝑀 − 𝑣𝑖)

. (6)

Здесь 𝑇 — это длительность времени усреднения.
Формула (6) справедлива для солитонов малой ам-
плитуды Φ0 ⩽ 0.5 [9].

Нас интересуют решения произвольной ампли-
туды. Для поставленных целей воспользуемся ме-
тодом псевдопотенциала Сагдеева, который под-
ходит для описания стационарной задачи. Будем
считать, что солитон прошел все стадии эволюции
и движется с постоянной скоростью. Вводя новую
переменную ξ = 𝑋 −𝑀𝑡, которая соответствует пе-
реходу в движущуюся с волной систему коорди-
нат, систему (1)–(4) можно свести к единственному
уравнению Пуассона [23]

𝜕2Φ

𝜕ξ2 = 𝑒
Φ − 𝑁𝑖(Φ), (7)

где 𝑁𝑖(Φ) = 𝑀/
√
𝑀2 − 2Φ — нормированная ион-

ная концентрация для стационарного случая [16,
23]. Однократное интегрирование (7) по Φ с уче-
том граничных условий 𝑑Φ/𝑑ξ = 0 при Φ = 0 дает
формулу для описания псевдопотенциала Сагдее-
ва, 𝑈(Φ) [23]:

−𝑈(Φ) =
1
2
(
𝜕Φ

𝜕ξ
)

2
, (8)

или

𝑈(Φ) = (1 − 𝑒Φ) −𝑀 (
√

𝑀2 − 2Φ −𝑀) . (9)

Профили ионно-звуковых солитонов произ-
вольной амплитуды могут быть найдены путем
численного интегрирования уравнений (7) или (8)
с использованием, например, метода Рунге–Кутты
4 порядка. На рис. 1 представлены профили по-
тенциала солитонов, найденные с использовани-
ем уравнения КдВ и численно методом Рунге–
Кутты (РК) для разных чисел Маха.

Рисунок 1 демонстрирует классические свой-
ства солитонов. А именно, с ростом скорости соли-
тона (числа Маха) растет его амплитудаΦ0 и умень-
шается ширина Δ. В рассмотренной двухкомпо-
нентной модели ионно-звуковые солитоны могут
существовать в диапазоне чисел Маха от 1 до 1.6 [6,
8, 23] с амплитудой до Φ0 ≈ 1.6. При этом уравне-
ние КдВ хорошо описывает солитоны с амплитудой
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Рис. 1. Профили потенциала солитона при разных значениях числа Маха: “РК” — численное моделирование методом
Рунге-Кутты; “КдВ” — анализ с использованием уравнения Кортевега-Де Вриза по формуле 5.

Φ0 ⩽ 0.5. Имея профили солитонов Φ(𝑋), мы мо-
жем перейти к расчету возмущенных функций рас-
пределения.

3. ВОЗМУЩЕННЫЕ ФУНКЦИИ
РАСПРЕДЕЛЕНИЯ ПО СКОРОСТЯМ
И ПО КИНЕТИЧЕСКИМ ЭНЕРГИЯМ

ДЛЯ ФОНОВЫХ ИОНОВ
Слева и справа от консервативного (классиче-

ского) солитона состояния среды (плазмы) иден-
тичны. При удалении от центра солитона плазма
быстро (экспоненциально) возвращается к невоз-
мущенному состоянию. Это означает, что везде,
кроме некоторой окрестности уединенной волны
(десятки-сотни λ𝐷), плазму можно считать равно-
весной. Стоит отметить, что для случая холодных
ионов их максвеловское распределение по ком-
понентам скоростей и по энергиям превращается
в дельта-функцию Дирака. Следуя рассуждениям
[8–10], будем анализировать возмущение функций
распределения в области плазмы, в центре которой
расположен солитон. Как отмечалось в [9], на прак-
тике достаточно, чтобы солитон полностью попа-
дал в исследуемую область плазмы, однако теоре-
тический анализ проще выполнить для случая цен-
тральной симметрии.

Введем обозначения 𝑓𝑣(𝑣𝑖) — ионная функ-
ция распределения по компонентам скоростей,
𝑓𝑊(𝑣𝑖) — ионная функция распределения по ки-
нетическим энергиям. Рассмотрим сначала 𝑓𝑣(𝑣𝑖).
Искомую функцию можно найти по известным
формулам

𝑓𝑣(𝑣𝑖) =
Δ𝑁

𝑁Δ𝑣𝑖
, (10)

или

𝑓𝑣(𝑣𝑖) =
Δ𝑡

𝑇Δ𝑣𝑖
. (11)

Формула (10) справедлива при усреднении по ан-
самблю ионов, формула (11) — при усреднении
по времени для одного иона (при условии эргодич-
ности плазмы). Здесь 𝑣𝑖 — скорость ионов вдоль
оси 𝑥, Δ𝑁 — количество частиц со скоростями
в промежутке от 𝑣𝑖 до 𝑣𝑖 + Δ𝑣𝑖, 𝑁 — количество
ионов в рассматриваемой области (в ансамбле),
Δ𝑡 — время, в течение которого выбранный ион
имеет скорость в диапазоне от 𝑣𝑖 до 𝑣𝑖 + Δ𝑣𝑖, 𝑇 —
время, за которое проводится усреднение. На прак-
тике 𝑇 соответствует временному разрешению из-
мерительных приборов. Анализ 𝑓𝑣(𝑣𝑖) по форму-
лам (10) и (11) полностью согласуется, что показано
в работах [6–10].

В нашей работе сосредоточимся на поиске точ-
ной формулы для 𝑓𝑣(𝑣𝑖) с использованием усред-
нения по времени для движения одного пробно-
го иона (по формуле (11)), взаимодействующего
с ионно-звуковым солитоном. Схематично постав-
ленная задача отображена на рис. 2.

Из рис. 2 видно, что при движении солитона
слева направо он взаимодействует с произвольно
выбранным ионом фона в течение некоторого вре-
мени и возмущает его динамические параметры.
Ион смещается вперед на несколько радиусов Де-
бая после прохождения солитона, при этом началь-
ная и конечная его скорости остаются равными ну-
лю [18]. Параметры движения выбранного иона бу-
дут использованы для усреднения по времени. Для
применения формулы (11) нам понадобится зави-
симость 𝑣𝑖(𝑡), найдем ее из второго закона Нью-
тона, записанного для пробного иона в электриче-
ском поле солитона 𝑚𝑖a𝑖 = 𝑒E. В нормированном
виде имеем

ξ = −
𝜕Φ(ξ)

𝜕ξ
(12)
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Рис. 2. Схема взаимодействия пробного иона с ионно-
звуковым солитоном; на вкладках показаны зависимо-
сти𝑋(𝑡) и 𝑣𝑖(𝑡) для пробного иона. Кружки отобража-
ют начальное и конечное положение пробного иона.

или с учетом ξ = 𝑋 −𝑀𝑡; 𝜕/𝜕𝑋 = 𝜕/𝜕ξ для неподвиж-
ной системы координат

̈𝑋 = −
𝜕Φ(𝑋, 𝑡)

𝜕𝑋
. (13)

Для анализа солитонов произвольной амплиту-
ды необходимо использование численного реше-
ния для потенциала Φ(𝑋, 𝑡) в (13). Соответствую-
щие решения представлены на вкладках к рис. 2
в виде зависимостей 𝑋(𝑡) и 𝑣𝑖(𝑡) при 𝑀 = 1.05. Ре-
шалась задача со следующими начальными услови-
ями: 𝑋(0) = 40, 𝑣𝑖(0) = 0. В рассматриваемом слу-
чае, ион достигает максимальной скорости при 𝑡 =
39. Параметры численного интегрирования соот-
ветствуют тем, что представлены на рис. 4 в рабо-
те [8]. Хоть численные решения и являются точны-
ми, они не позволяют получить искомые аналити-
ческие выражения. Далее будет описана методика
получения нужных формул без использования чис-
ленных методов.

В пределе Δ𝑡 → 0 формулу (11) можно записать
в дифференциальном виде

𝑓𝑣(𝑣𝑖) =
2𝑑𝑡
𝑇𝑑𝑣𝑖

. (14)

Множитель “2” соответствует случаю централь-
ной симметрии. Детальный вывод формулы (14)
можно найти в работе [8]. Формула (14) исчерпы-
вающим образом описывает возмущенную функ-
цию распределения для солитонов произвольной
амплитуды, однако в общем случае требует привле-
чения численных методов, поскольку зависимость
𝜐𝑖(𝑡), определяется численно (рис. 2). Для солито-
нов малой амплитуды искомая функция 𝑓𝑣(𝑣𝑖) была
найдена в [8, 9] с использованием метода разложе-
ния псевдопотенциала Сагдеева и уравнения КдВ.
Перейдем к описанию общей методики получения
нужных формул без использования численных ме-
тодов.

Будем придерживаться логики рассужде-
ний [8, 9]. Для решения уравнения (14) нам нужна
зависимость производной 𝑑𝑡/𝑑𝑣𝑖 от параметра 𝑣𝑖.
По закону сложения скоростей имеем 𝑣′

𝑖
= 𝑣𝑖 −𝑀,

где 𝑣′
𝑖

— скорость иона в движущейся системе коор-
динат. Консервативность поля влечет сохранение
механической энергии

𝑣
′2
𝑖

2
=
𝑀2

2
− Φ (15)

или
𝑣′
𝑖
= −

√

𝑀2 − 2Φ. (16)
В работе [8] формула (16) была получена путем

интегрирования (13). Дифференцирование (15) по ξ
дает

𝑣′
𝑖

𝑑𝑣′
𝑖

𝑑ξ
= −

𝑑Φ

𝑑ξ
. (17)

Теперь учитывая (8), а также 𝑑𝑡

𝑑𝑣′
𝑖

=
𝑑𝑡

𝑑ξ

𝑑ξ

𝑑𝑣′
𝑖

=

=
1
𝑣′
𝑖

𝑑ξ

𝑑𝑣′
𝑖

можно получить

𝑑𝑡

𝑑𝑣′
𝑖

=
1

√
−2𝑈(Φ)

.

С учетом (9) имеем
𝑑𝑡

𝑑𝑣′
𝑖

=
1

√

−2 [(1 − 𝑒Φ) −𝑀 (
√
𝑀2 − 2Φ −𝑀)]

. (18)

Далее, учитывая закон сложения скоростей 𝑣′
𝑖
=

= 𝑣𝑖 −𝑀и выражаяΦиз (15), а
√
𝑀2 − 2Φиз (16), по-

лучаем
𝑑𝑡

𝑑𝑣𝑖
=

1
√

−2 (1 − 𝑒𝑀𝑣𝑖−𝑣
2
𝑖
/2 +𝑀𝑣𝑖)

(19)

или с учетом (14) окончательно

𝑓𝑣(𝑣𝑖) =
2

𝑇

√

−2 (1 − 𝑒𝑀𝑣𝑖−𝑣
2
𝑖
/2 +𝑀𝑣𝑖)

. (20)

Формулу (20) можно переписать в виде 𝑓𝑣(𝑣𝑖) =
= 2/ (𝑇

√
−2𝑈(Φ)), где Φ(𝑣𝑖) определяется уравне-

нием (15). На рис. 3 представлены графики функ-
ции 𝑓𝑣(𝑣𝑖), полученные с использованием трех ме-
тодов: по приближенной формуле (6) (впервые по-
лучена в [9]); по точной формуле (20); моделиро-
ванием по ансамблю частиц по методике [6, 8].
График функции 𝑓𝑣(𝑣𝑖), полученный из выраже-
ния (20), справедливый для произвольных ампли-
туд, выполнен с заливкой, поскольку он является
эталонным. При этом приближенные зависимости
представлены штриховыми кривыми.

Как видно из рис. 3, результаты, полученные
по формуле (20), полностью совпадают с резуль-
татами моделирования [8]. Приближенная форму-
ла (6) остается справедливой для малых амплитуд.
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Рис. 3. Возмущенные функции распределения 𝑓𝑣(𝑣𝑖) при 𝑇 = 38 и при разных значениях числа Маха, рассчитанные
с использованием различных методов: по приближенной формуле (6) — штриховая кривая; по точной формуле (20) —
сплошная кривая с заливкой; моделированием по ансамблю частиц по методике [6, 8] — треугольники.

Параметрами функции 𝑓𝑣(𝑣𝑖) являются число Ма-
ха 𝑀 и время усреднения 𝑇. Область определения
𝑓𝑣(𝑣𝑖) находится в диапазоне 0 < 𝑣𝑖 < 𝑀. Действи-
тельно, в работах [6, 16, 18] показано, что в электри-
ческом поле классического ионно-звукового соли-
тона сжатия ионы могут двигаться только с по-
ложительной скоростью 𝑣𝑖 > 0. С другой стороны,
верхняя граница 𝑣𝑖 < 𝑀 определяется докритич-
ностью рассматриваемых солитонов. При 𝑣𝑖 ⩾ 𝑀
происходит опрокидывание волны и формирова-
ние многопотокового движения.

Используя (20), можно найти среднее зна-
чение плотности ионного тока, индуцируемого
солитонами, 𝐽𝑖. В нормированном виде имеем

𝐽𝑖 =

∫
𝑀

0
𝑣𝑖𝑓𝑣(𝑣𝑖)𝑑𝑣𝑖. При 𝑀 = 1.05, 𝑇 = 71 получим

𝐽𝑖 = 0.26, что полностью согласуется с результата-
ми работы [6], где рассчитана величина 𝐽𝑖 для груп-
пы одинаковых солитонов с периодом следования
𝑇 = 71 при 𝑀 = 1.05. Также наблюдается согласие
с результатами работы [16], где величина 𝐽𝑖 бы-
ла получена с использованием уравнений гидро-
динамики. В свою очередь, зная 𝐽𝑖, легко рассчи-
тать полный электрический ионный заряд, пере-
мещаемый солитоном через единичную площад-
ку, 𝑄 = 𝐽𝑖𝑇. Несложно убедиться, что полученная
зависимость 𝑄𝑖(𝑀) ∼ 𝑄𝑖(Φ0) согласуется с зависи-
мостью Δ𝑋(Φ0) = 𝑄𝑖(Φ0), рассчитанной в [18] раз-
ными способами (здесь Δ𝑋 — дистанция переноса
ионов солитоном).

Найдем выражение для функции распределе-
ния по кинетическим энергиям. Зная функцию
𝑓𝑣(𝑣𝑖), можно найти функцию 𝑓𝑊(𝑊𝑖), воспользо-
вавшись известной взаимосвязью [7, 10]

𝑓𝑡(𝑣𝑖)𝑑𝑣𝑖 = 𝑓𝑡(𝑊𝑡)𝑑𝑊𝑖. (21)

Учитывая, что 𝑊𝑖 = 𝑣
2
𝑖
/2, имеем

𝑓𝑊(𝑊𝑖) =

√
3

𝑇
√
𝑊𝑖 (𝑒

(

√

2𝑊𝑖𝑀−𝑊)−
√

2𝑊𝑖𝑀 − 1)
1/2

. (22)

Область определения функции 𝑓𝑊𝑖
(𝑊𝑖) определяет-

ся неравенством 0 < 𝑊𝑖 < 𝑀
2/2.

На рис. 4 представлены графики 𝑓𝑊(𝑊𝑖) для
разных чисел Маха. Для сравнения на графиках
представлены результаты [10], полученные путем
моделирования по ансамблю и по приближенной
формуле, полученной с использованием уравнения
КдВ.

Из рис. 4 видно, что результаты, полученные по
формуле (22), полностью согласуются с результа-
тами моделирования [10]. Приближенная форму-
ла (14) из [10] остается справедливой для малых ам-
плитуд.

Как видно из рис. 3 и 4, функции распреде-
ления фоновых ионов становятся сильно нерав-
новесными в окрестности солитонов. Они соот-
ветствуют переносу ионов солитоном (возбужде-
нию солитонных токов) и имеют “beam-like” фор-
му. Наличие потока заряженных частиц в окрест-
ности солитона может стать причиной развития по-
токовых неустойчивостей [24]. В частности, дрейф
электронов со скоростью 𝑣𝑒 > 𝐶𝑠 может быть при-
чиной дрейфовой ионно-звуковой неустойчиво-
сти. При увеличении скорости дрейфа может раз-
виваться бунемановская неустойчивость. Однако
в нашей модели электроны полагались равновес-
ными, а их потоки полагались равными нулю. Со-
литонные токи, рассмотренные нами, могут быть
причиной потоковых пыле-акустических неустой-
чивостей [25]. Данная ситуация возможна в пыле-
вой плазме в присутствии ионно-звуковых солито-
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Рис. 4. Возмущенные функции распределения 𝑓𝑊(𝑊𝑖) при 𝑇 = 38 и при разных значениях числа Маха, рассчитанные
с использованием различных методов: по приближенной формуле (14) из [10] — штриховая кривая; по точной фор-
муле (22) — сплошная кривая с заливкой; моделированием по ансамблю частиц по методике [10] — треугольники.

нов [13]. Ионные потоки также могут влиять на за-
ряд пылевых частиц в пылевой плазме, что являет-
ся одной из причин неустойчивостей [26]. Деталь-
ный анализ подобных задач является темой буду-
щих работ.

4. ЗАКЛЮЧЕНИЕ
На основе метода псевдопотенциала Сагдее-

ва получено аналитическое выражение, описыва-
ющее возмущенные ионно-звуковым солитоном
функции распределения фоновых ионов по компо-
нентам скорости 𝑓𝑣(𝑣𝑖) и по кинетическим энерги-
ям 𝑓𝑊(𝑊𝑖). Ранее было показано [5–10], что ионно-
звуковые солитоны сильно возмущают изначально
равновесную функцию распределения ионов. В об-
ласти, занятой солитонами, такая функция име-
ет “beam-like” форму [6–10]. Полученные резуль-
таты справедливы только для холодных плазмен-
ных фракций. Для случая теплых ионов их мож-
но использовать только в качестве оценок. Ожида-
ется, что учет теплового движения ионов приведет
к уширению максимумов функций распределения.
Аналитические формулы (20), (22) просты в приме-
нении, они могут использоваться для интерпрета-
ции экспериментальных данных, а также для разви-
тия новых методов плазменной диагностики. Сто-
ит отметить, что использованный нами подход яв-
ляется довольно универсальным и может приме-
няться для описания свойств электронно- и пыле-
акустических солитонов.
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ION VELOCITY AND ENERGY DISTRIBUTION FUNCTIONS PERTURBED
BY THE ION-ACOUSTIC SOLITONS: ANALYTICAL CALCULATION

FOR ARBITRARY AMPLITUDES
F. M. Trukhachev𝒂,∗, M. M. Vasiliev𝒂, and O. F. Petrov𝒂

aJoint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 Russia
∗e-mail: ftru@mail.ru

Distribution functions of background ions perturbed by the ion-acoustic solitons are calculated using
the Sagdeev pseudopotential approach for the case of cold ions. Velocity and kinetic-energy distribution
functions are analyzed. Explicit expressions valid for the solitons of arbitrary amplitude are obtained.
It is demonstrated that the solitons form a strongly nonequilibrium plasma in their vicinity. The results
are compared with previous analytical calculations and results of simulations.
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