RAS PhysicsФизика плазмы Plasma Physics Reports

  • ISSN (Print) 0367-2921
  • ISSN (Online) 3034-6371

PLASMA EQUILIBRIUM WITH INNER SEPARATRIX IN TOKAMAKS

PII
S0367292125010028-1
DOI
10.31857/S0367292125010028
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 1
Pages
17-24
Abstract
Several plasma equilibria with inner (current and magnetic) separatrices in a tokamak have been considered. Calculated and available experimental data for such equilibria have been compared. It is shown that a qualitative change in the equilibrium plasma configuration is possible at a small change in the inner plasma inductance in a tokamak. It is noted that an equilibrium solution is possible for some types of flux functions in the Grad–Shafranov equation, only if the plasma density at its boundary is nonzero. It is established that the formation of a natural poloidal divertor is determined not only by the value but also by the type of flux functions of the Grad–Shafranov equation. The possibility of the existence of equilibrium plasma configurations with magnetic axes located one above the other and the possibility of the existence of equilibrium plasma systems with many magnetic axes are shown.
Keywords
токамак внутренняя сепаратриса естественный полоидальный дивертор равновесие внутренняя индуктивность
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Сепаратриса. Математическая энциклопедия. / Под ред. И.М. Виноградова. М.: Советская энциклопеди, 1984. Т. 4.
  2. 2. Suzuki Y., Yamada H., Nakajima N., Watanabe K., Nakamura Y., Hayashi T. // Nucl. Fusion. 2006. V. 46. P. 123. https://doi.org/10.1088/0029-5515[46/1/014
  3. 3. Mukhovatov V.S., Shafranov V.D. // Nuclear Fusion. 1971. V. 11. P. 605. https://doi.org/10.1088/0029-5515/11/6/005
  4. 4. Callen J.D., Dory R.A. // Physics of Fluids. 1971. V. 15. P. 1523. https://doi.org/10.1063/1.1694118
  5. 5. Strauss H.R. // Phys. Rev. Letters. 1971. V. 26. P. 616.
  6. 6. Mishra K., Zuchi H., Idei H., Tashima S., Banerjee S., Yasegawa M., Hanada K., Nakamura K., Fujisawa A., Nagashima Y., Matsuoka K., Kuzmin A., Onchi T., and QUEST Team // Plasma and Fusion Research: Regular Articles. 2014. V. 9. 3402093. https://doi.org/10.1585/pfr.9.3402093
  7. 7. Готт Ю.В. // Вопросы атомной науки и техники. Сер. Термоядерный синтез. 2024. Т. 47. В. 3. С. 47. https://doi.org/10.2151/0202=3822-2024-47-3-108-116
  8. 8. Takizuka T. // J. Plasma Fusion Res. 2002. V. 78. P. 1282.
  9. 9. Martynov A.A., Medvedev S.Yu., Villard L. // Phys. Rev. Lett. 2003. V. 91. P. 085004. https://doi.org/10.1103/PhysRevLett.91.085004
  10. 10. Rodrigues P., Bizarro P.S. // Phys. Rev. Lett. 2007. V. 99. P. 125001. https://doi.org/10.1103/PhysRevLett.99.125001
  11. 11. Готт Ю.В., Лукаш В.Э. // Письма в ЖТФ. 2024. Т. 50. С. 20. https://doi.org/0.61011//PJTF.2024.07.57464.19809
  12. 12. Gott Yu.V., Yurchenko E.I. // Proc. 25 IAEA Fusion Energy Conference, October13-18 2014, St. Petersburg. Russian Federation. TH/P3-23.
  13. 13. Peng YK.M., Dory R.A., Nelson D.B., Sayer R.O. // Physics of Fluids. 1978. V. 21. P. 467. https://doi.org/10.1063/1.862246
  14. 14. Yu J., Wang S., Li J. // Phys. Plasmas. 2006. V. 13. P. 054501. https://doi.org/10.1063/1.2201890
  15. 15. Li J., Luo J., Wang S., Fu P., Shen B., Liu F., Wan B., Shan J., Xu G., Huang J., Yu J., Hu J., Yuan Q., Hu Y., and HT-7 Team // Nucl. Fusion. 2007. V. 47. P. 1071. https://doi.org/10.1088/0029-5515/47/9/001
  16. 16. Hu Y. // Phys. Plasmas. 2008. V. 15. P. 022505. https://doi.org/10.1063/1.2839032
  17. 17. Medvedev S.Yu., Hu Y., Martynov A.A., Villard L. // 36th EPS Conference on Plasma Phys. Sofia, June 29 – July 3, 2009 ECA V. 33. P-1.130 (2009).
  18. 18. DeLucia J., Jardin S.C., Tadd A.M.M. // Journal of Computational Physics. 1980. V. 37. P. 183. https://doi.org/10.1016/0021-9991 (80)90020-0
  19. 19. Sabbagh S.A., Gross R.A., Mauel M.E., Navratil G.A., Bell M.G., Bell R., Bitter M., Bretz N.L., Budny R.V., Bush C.E., Chance M.S., Efthimion P.C., Fredrickson F.D., Hatcher Ft., Hawryluk R.J., Hirshman S.P., Janos A.C., Jardin S.C., Jassby D.L., Manickam J., McCune D.C., McGuire K.M., Medley S.S., Mueller D., Nagayama Y., Owens D.K., Okabayashi M., Park H.K., Ramsey A.T., Stratton B.C., Synakowski E.J., Taylor G., Wieland R.M., Zarnstortf M.C., Kesner J., Marmar E.S., Terry J.L. // Phys. Fluids B. 3 (8), 2277 (1991). https://doi.org/10.1063/1.859647
  20. 20. Ильгисонис В.И., Сковорода А.А., Сорокина Е.А. // ВАНТ. Сер. Термоядерный синтез. 2016. Т. 39. Вып. 1. С. 22.
  21. 21. Shi B. // Physics of Plasmas. 2005. V. 12. P. 122504. https://doi.org/10.1063/1.2140227
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library