- PII
- S30346371S0367292125030022-1
- DOI
- 10.7868/S3034637125030022
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 3
- Pages
- 270-281
- Abstract
- In a brief review, we discuss the processes associated with plasma self-organization in tokamaks, and the model of the self-consistent pressure profiles formation used in the energy and particle balance equations. Plasma self-organization can be interpreted as the formation of a structure consisting from chain of magnetic islands, each of which can form a self-consistent pressure profile. The convergence of island chains leads to anomalous transport, and their divergence leads to the formation of transport barriers. In the proposed model, the total energy flux Γ consists of two main parts: Γ and Γ, where Γ corresponds to a self-consistent pressure profile, and the anomalous turbulent flux Γ appears, when the pressure profile is distorted by additional heating/cooling, as well as the neoclassical flux Γ. The electron pressure profiles obtained by Thomson scattering in plasmas with magnetic islands and the effect of sawtooth oscillations on the anomalous Γ flux are analyzed. We present examples of the plasma confinement deterioration due to the nonoptimal deposition of additional heating power, and the confinement improvement due to increased radiation losses at the edge, leading to diminishing the level of magnetic fluctuations, which can be associated with the divergence of the chain of magnetic islands or with a decrease in the size of the islands.
- Keywords
- удержание плазмы в токамаке самоорганизация турбулентность магнитные острова
- Date of publication
- 23.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 39
References
- 1. Пригожин И., Стенгерс И. Порядок из хаоса: Новый диалог человека с природой. М.: Прогресс, 1986, 432 с.
- 2. Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М.: Мир, 1991.
- 3. Сoppi B. // Comments Plasma Phys. Control. Fusion. 1980. V. 5. P. 261.
- 4. Кадомцев Б.Б. // Физика плазмы. 1987. Т. 13. С. 771.
- 5. Minardi E., Lazzaro E., Sozzi C., Cirant S. // Nucl. Fusion. 2003. V. 43. P. 369. https://doi.org/10.1088/0029-5515/43/5/310
- 6. Днестровский Ю.Н. Самоорганизация горячей плазмы. М: НИЦ “Курчатовский институт”, 2013.
- 7. Diamond P.H., Hahm T.S. // Phys. Plasmas. 1995. V. 2. P. 3640.
- 8. Sanchez R., Newman D.E. // Plasma Phys. Control. Fusion. 2015. V. 57. P. 123002. https://doi.org/10.1088/0741-3335/57/12/123002
- 9. Bark P., Chang C. and Weisenfeld K. Self-organized critically: an explanation of 1/f noise // Phys. Rev. Lett. 1987. V. 59. P. 381-384.
- 10. Касьянова Н.В., Андреев В.Ф. //ВАНТ. Сер. Термоядерный синтез. 2009.№1. С. 53.
- 11. Taylor J.B. // Phys. Fluids B. 1993. V. 5. P. 4378. https://doi.org/10.1063/1.860555
- 12. Курскиев Г.С., Яньков В.В., Гусев В.К., Жильцов Н.С., Киселев Е.О., Крыжановский А.К., Минаев В.Б., Мирошников И.В., Петров Ю.В., Сахаров Н.В. и др. // Письма в ЖЭТФ. 2024. Т. 119. С. 34. https://doi.org/10.31857/S1234567824010075
- 13. Яньков В.В. // УФН. 1997. Т. 167. С. 499. https://doi.org/10.3367/UFNr.0167.199705b.0499
- 14. Gryaznevich M. // Nucl. Fusion. 2022. V. 62. P. 042008. https://doi.org/10.1088/1741-4326/ac26ee
- 15. Kurskiev G.S., Miroshnikov I.V., Sakharov N.V., Gusev V.K., Petrov Y.V., Minaev V.B., Balachenkov I.M., Bakharev N.N., Chernyshev F.V., Goryainov, V.Y. et al. // Nucl. Fusion. 2022. V. 62. P. 104002. https://doi.org/10.1088/1741-4326/ac881d
- 16. Dnestrovskij Y.N., Melnikov A.V., Pustovitov V.D. // Plasma Phys. Control. Fusion. 2009. V. 51. P. 015010. https://doi.org/10.1088/0741-3335/51/1/015010
- 17. Melnikov A.V., Eliseev L.G., Pastor I., Herranz J., Hidalgo C., Fujisawa A., Minami T., Razumova K.A., Dnestrovskij Yu.N., Lysenko S.E., Harris J.H. // Proc. 34th EPS Conf. on Plasma Phys. Warsaw, 2–6 July 2007. ECA. V. 31F. P-2.060. https://info.fusion.ciemat.es/OCS/EPS2007/pdf/P2_060.pdf.
- 18. Razumova K.A., Andreev V.F., Eliseev L.G., Kislov A.Ya., La Haye R.J., Lysenko S.E., Melnikov A.V., Notkin G.E., Pavlov Yu.D., Kantor M.Yu. // Nucl. Fusion. 2011. V. 51. P. 08302. https://doi.org/10.1088/0029-5515/51/8/083024
- 19. Днестровский Ю.Н., Мельников А.В., Лысенко С.Е., Мещеряков А.И., Харчев Н.К., Васильков Д.Г., Гребенщиков С.Е., Касьянова Н.В., Черкасов С.В., Вафин И.Ю., Елисеев Л.Г., Сычугов Д.Ю. // Физика плазмы. 2024. Т. 50. С. 525. https://doi.org/10.31857/S0367292124050026
- 20. Dyabilin K.S., Razumova K.A. // Nucl. Fusion. 2015. V. 55. P. 053023. https://doi.org/10.1088/0029-5515/55/5/053023
- 21. Дябилин К.С., Разумова К.А. // Физика плазмы. 2015. Т. 41. С. 747.
- 22. Razumova K.A., Kasyanova N.V., Andreev V.F., Lysenko S.E. // Plasma Phys. Control. Fusion. 2022. V. 64. P. 125007. https://doi.org/10.1088/1361-6587/abe023
- 23. Arnichand H., Citrin J., Hacquin S., Sabot R., Kr¨аmer-Flecken A. // Plasma Phys. Control. Fusion. 2016. V. 58. P. 014037. https://doi.org/10.1088/0741-3335/58/1/014037
- 24. Vershkov V.A., Shelukhin D.A., Subbotin G.F., Dnestrovskij Yu.N., Danilov A.V., Melnikov A.V., Eliseev L.G., Maltsev S.G., Gorbunov E.P., Sergeev D.S. et al. // Nucl. Fusion. 2015. V. 55. P. 063014. http://iopscience.iop.org/article/10.1088/00295515/55/6/063014.
- 25. Eliseev L.G., Melnikov A.V., Lysenko S.E., Khabanov P.O., Zenin V.N., Drabinskij M.A., Kharchev N.K., Kozachek A.S., Krupnik L.I. and HIBP team // Plasma Fusion Res. 2018. V. 13. P. 3402106. https://doi.org/10.1585/pfr.13.3402106
- 26. Razumova K.A., Andreev V.F., Kislov A.Ya., Kirneva N.A., Lysenko S.E., Pavlov Yu.D., Shafranov T.V., the T-10 Team, Donn´e A.J.H., Hogeweij G.M.D., Spakman G.W., Jaspers R., the TEXTOR team, Kantor M. and Walsh M. // Nucl. Fusion. 2009. V. 49. P. 065011. https://doi.org/10.1088/0029-5515/49/6/065011
- 27. Xie R., Austin M.E., Gentle K., Petty C.C. // Plasma Phys. Control. Fusion. 2024. V. 66. P. 035013. https://doi.org/10.1088/1361-6587/ad1b88
- 28. Разумова K.A., Андреев В.Ф., Бельбас И.С., Горшков A.В., Днестровский A.Ю., Дябилин K.С., Кислов A.Я., Лысенко С.E., Ноткин Г.E., Тимченко Н.Н. и др. // Физика плазмы. 2013. Т. 39. С. 779. https://doi.org/10.7868/S0367292113090072
- 29. Razumova K.A., Andreev V.F., Eliseev L.G., Kantor M.Y., Kasyanova N.V., Lysenko S.E., Melnikov A.V. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 055003. https://doi.org/10.1088/1361-6587/abe023
- 30. Kantor M.Y., Donn´e A.J.H., Jaspers R., van der Meiden H.J. // Plasma Phys. Control. Fusion. 2009. V. 51. P. 055002. https://doi.org/10.1088/0741-3335/51/5/055002
- 31. Choe G.H., Yun G.S., Nam Y., Lee W., Park H.K., Bierwage A., Domier C.W., Luhmann Jr.N.C., Jeong J.H., Baeet Y.S. et al. // Nucl. Fusion. 2015. V. 55. P. 013015. https://doi.org/10.1088/0029-5515/55/1/013015
- 32. Lee J.E., Yun G.S., Kim M., Lee J., Lee W., Park H.K., Domier C.W., Luhmann Jr.N.C., Ko W.H. and the KSTAR team // Nucl. Fusion. 2015. V. 55. P. 113035. https://doi.org/10.1088/0029-5515/55/11/113035
- 33. Razumova K.A., Lysenko S.E. // Plasma. 2023. V. 6. P. 408. https://doi.org/10.3390/plasma6030028
- 34. Kantor M.Y., Donn´e A.J.H. // Proc. Science (Proc. ECPD2015) 2015. P. 034. https://pos.sissa.it/240/034/pdf.
- 35. Разумова К.А., Тимченко Н.Н., Днестровский А.Ю., Лысенко С.Е. // Физика плазмы. 2016. Т. 42. С. 787. https://doi.org/10.7868/S0367292116090080
- 36. Разумова К.А., Дремин М.М., Касьянова Н.В., Кирнева Н.А., Ключников Л.А., Крупин В.А., Крылов С.В., Лысенко С.Е., Ноткин Г.Е., Сарычев Д.В., Соловьев Н.А., Чуканов М.В., Онгена Дж., Мессиан A. // Физика плазмы. 2020. Т. 46. С. 291. https://doi.org/10.31857/S0367292120040095
- 37. Melnikov A.V., Eliseev L.G., Perfilov S.V., Andreev V.F., Grashin S.A., Dyabilin K.S., Chudnovskiy A.N., Isaev M.Yu., Lysenko S.E., Mavrin V.A. et al. // Nucl. Fusion. 2013. V. 53. P. 093019. https://doi.org/10.1088/0029-5515/53/9/093019
- 38. Melnikov A.V., Krupnik L.I., Eliseev L.G, Barcala J.M., Bravo A., Chmyga A.A., Deshko G.N., Drabinskij M.A., Hidalgo C., Khabanov P.O. et al. // Nucl. Fusion. 2017. V. 57. P. 072004. https://doi.org/10.1088/1741-4326/aa5382
- 39. Andreev V.F., Borschegovskij A.A., Chistyakov V.V., Dnestrovskij Yu.N., Gorbunov E.P., Kasyanova N.V., Lysenko S.E., Melnikov A.V., Myalton T.B., Roy I.N., Sergeev D.S., Zenin V.N. // Plasma Phys. Control. Fusion. 2016. V. 58. P. 055008. https://doi.org/10.1088/0741-3335/58/5/055008
- 40. Andreev V.F., Dnestrovskij Yu.N., Ossipenko M.V., Razumova K.A., Sushkov A.V. // Plasma Phys. Control. Fusion. 2004. V. 46. P. 319. https://doi.org/10.1088/0741-3335/46/2/001
- 41. TFR Group and FOM ECRH Team // Nucl. Fusion. 1988. V. 28. P. 1995. https://doi.org/10.1088/0029-5515/28/11/006
- 42. Doyle E.J., Houlberg W.A., Kamada Y., Mukhovatov V., Osborne T.H., Polevoi A., Bateman G., Connor J.W., Cordey J.G., Fujita T. et al. // Nucl. Fusion. 2007. V. 47. P. S18. https://doi.org/10.1088/0029-5515/47/6/S02
- 43. Luce T., Challis C., Ide S., Joffrin E., Kamada Y., Politzer P., Schweinzer J., Sips A., Stober J., Giruzzi G. et al. // Nucl. Fusion. 2014. V. 54. P. 013015. https://doi.org/10.1088/0029-5515/54/1/013015
- 44. Hobirk J., Imbeaux F., Crisanti F., Buratti P., Challis C.D., Joffrin E., Alper B., Andrew Y., Beaumont P. et al. // Plasma Phys. Control. Fusion. 2012. V. 54. P. 095001. https://doi.org/10.1088/0741-3335/54/9/095001
- 45. Yong-Su Na, Lee Y.H., Byun C.S., Kim S.K., Lee C.Y., Park M.S., Yang S.M., Kim B., Jeon Y.-M., Choi G.J., Citrin J., Juhn J.W., Kang J.S., Kim H.-S., Kim J.H., Ko W.H., Kwon J.-M., Lee W.C., Woo M.H., Yi. S., Yoon S.W. // Nucl. Fusion. 2020. V. 60. P. 086006. https://doi.org/10.1088/1741-4326/ab8b7a
- 46. Buttery R.J., Covele B., Ferron J., Garofalo A., Holcomb C.T., Leonard T., Parkm J.M., Petrie T., Petty C., Staebler G., Strait E.J., Van Zeeland M. // J. Fusion Energy. 2019. V. 38. P. 72. https://doi.org/10.1007/s10894-018-0185-y
- 47. Ongena J., Messiaen A.M., Unterberg B., Budny R.V., Bush C.E., Hill K., Hoang G.T., Jackson G., Kallenbach A., Monier-Garbet P. et al. // Plasma Phys. Control. Fusion. 1999. V. 41. P. A379. https://doi.org/10.1088/0741-3335/41/3A/031
- 48. Vershkov V.A., Sarychev D.V., Notkin G.E., Shelukhin D.A., Buldakov, M.A. Dnestrovskij Yu.N., Grashin S.A., Kirneva N.A., Krupin V.A., Klyuchnikov L.A., Melnikov A.V. et al. // Nucl. Fusion. 2017. V. 57. P. 102017. http://iopscience.iop.org/0029-5515/57/10/102017.
- 49. Donn´e A.J.H., Melnikov A.V., Van Oost G. // Czechoslovak J. Phys. 2002. V. 52. P. 1077. https://doi.org/10.1023/A:1021024005348
- 50. Сергеев Н.С., Мельников А.В., Елисеев Л.Г. // Письма ЖЭТФ. 2024. Т. 119. С. 817. https://doi.org/10.31857/S1234567824110077
- 51. Melnikov A.V., Eliseev L.G., Castej´on F., Hidalgo C., Khabanov P.O., Kozachek A.S., Krupnik L.I., Liniers M., Lysenko S.E., de Pablos J.L. et al. // Nucl. Fusion. 2016. V. 56. P. 112019. https://doi.org/10.1088/0029-5515/56/11/112019
- 52. Melnikov A.V., Vershkov V.A., Eliseev L.G., Grashin S.A., Gudoshnik A.V., Krupnik L.I., Lysenko S.E., Mavrin V.A., Perfilov S.V. et al., // Plasma Phys. Control. Fusion. 2006. V. 48. P. S87. https://doi.org/10.1088/0741-3335/48/04S07
- 53. Eliseev L.G., Zenin V.N., Lysenko S.E., Melnikov A.V. // J. Phys.: Conf. Series. 2017. V. 907. P. 012002.
- 54. Eliseev L.G., Lysenko S.E., Melnikov A.V., Krupnik L.I., Kozachek A.S., Zenin V.N. // Probl. Atom. Sci. Techn. Ser. Plasma Phys. 2017. V. 107. P. 241.
- 55. Joffrin E., Challis C.D., Conway G.D., Garbet X., Gude A., Gunter S., Hawkes N.C., Hender T.C., Howell D.F. et al. // Nucl. Fusion. 2003. V. 43. P. 1167. https://doi.org/10.1088/0029-5515/43/10/018
- 56. Leconte M., Cho Y.W., Ida K. // Proc. 29-th Fusion Energy Conf. (FEC 2023) 16–23 October, London, UK, Rep. 1634. https://www.iaea.org/sites/default/files/23/10/cn316_fec_preliminary_program.pdf .
- 57. Minjun J. Choi, Jae-Min Kwon, Lei Qi, Diamond P.H., Hahm T.S., Hogun Jhang, Juhyung Kim, Leconte M., Hyun-Seok Kim, Byoung-Ho Park, Jinil Chung, Jaehyun Lee, Minho Kim, Gunsu S. Yun, Won-Ha Ko, Lee K.D., Juhn J.W. and the KSTAR Team // Preprint. July 2022. 2207.06610v5 [physics.plasmaph] 21 Feb 2024. https://doi.org/10.48550/arXiv.2207.06610
- 58. Kantor M.Yu., Krа¨mer-Flecken A., Soldatov S. // Proc. 37th EPS Conf. Plasma Physics. Dublin, Ireland, 2010. ECA, V. 34A. P4.134. https://info.fusion.ciemat.es/OCS/EPS2010pap/pdf/P4.134.pdf.
- 59. Dynamic Ergodic Divertor (special issue) / Finken K.H. // Fusion Eng. Des. 1997. V. 37. P. 335.
- 60. Spakman G.W., Hogeweij G.M.D., Jaspers R.J.E., Schuller F.C., Westerhof E., Boom J.E., Classen I.G.J., Delabie E., Domier C., Donne A.J.H., Kantor M.Yu., Kramer-Flecken A., Liang Y., Luhmann N.C., Park H.K., van de Pol M.J., Schmitz O., Oosterbeek J.W. and the TEXTOR Team // Nucl. Fusion. 2008. V. 48. P. 115005. https://doi.org/10.1088/0029-5515/48/11/115005
- 61. Classen I.G.J., Westerhof E., Domier C.W., Donne A.J.H., Jaspers R.J.E., Luhmann N.C., Park H.K, van de Pol M.J., Spakman G.W., Jakubowski M.W. and the TEXTOR team // Phys. Rev. Lett. 2007. V. 98. P. 035001. https://doi.org/10.1103/PhysRevLett.98.035001
- 62. Jakubowski M.W., Abdullaev S.S., Finken K.H. and the TEXTOR Team // Nucl. Fusion. 2004. V. 44. P. S1. https://doi.org/10.1088/0029-5515/44/6/S01
- 63. Stoschus H., Schmitz O., Frerichs H., Reiser D., Jakubowski M.W., Unterberg B., Lehnen M., Reiter D., Samm U. and the TEXTORteam // Nucl. Fusion. 2012. V. 52. P. 083002. https://doi.org/10.1088/0029-5515/52/8/083002
- 64. Garcia J., Giruzzi G. and JET EFDA Contributors. // Nucl. Fusion. 2013. V. 53. P. 043023. https://doi.org/10.1088/0029-5515/53/4/043023