ОФНФизика плазмы Plasma Physics Reports

  • ISSN (Print) 0367-2921
  • ISSN (Online) 3034-6371

Поверхностная рекомбинация Н атомов на пирексе в водородной плазме среднего давления

Код статьи
S30346371S0367292125040083-1
DOI
10.7868/S3034637125040083
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 4
Страницы
428-437
Аннотация
Измерена вероятность гетерогенной рекомбинации атомов водорода, γH , на поверхности трубки из пирекса в тлеющем разряде постоянного тока в чистом водороде среднего давления (2–7 Торр) в зависимости от давления и тока разряда для двух температур стенки. Показано отсутствие зависимости вероятности рекомбинации от давления и тока разряда при условии предварительной тренировки трубки в разряде водорода. γH в течение тренировки трубки уменьшается с характерным временем выхода на стационарное значение ~30 минут. Анализ возможного механизма рекомбинации с помощью квантовохимических методов показал, что рекомбинация атомов водорода на поверхности пирекса связана с радикалами OH и кислородными вакансиями на поверхности, а динамика γH может быть объяснена гибелью поверхностных радикалов OH во время тренировки трубки.
Ключевые слова
водородная плазма тлеющий разряд постоянного тока подготовка поверхности гетерогенная рекомбинация квантовая химия DPLNO-CCSD(T) DFT
Дата публикации
05.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Adamovich I., Agarwal S., Ahedo E., Alves L.L., Baalrud S., Babaeva N., Bogaerts A., Bourdon A., Bruggeman P.J., Canal C. et al. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 373001. https://doi.org/10.1088/1361-6463/ac5e1c
  2. 2. Alves L.L., Becker M.M., van Dijk J., Gans T., Go D.B., Stapelmann K., Tennyson J., Turner M.M., Kushner M.J. // Plasma Sources Sci. Technol. 2023. V. 32. P. 023001. https://doi.org/10.1088/1361-6595/acb810
  3. 3. Turner M.M. // Plasma Processes Polymers. 2017. V. 14. P. 201600121. https://doi.org/10.1002/ppap.201600121
  4. 4. Bonitz M., Filinov A., Abraham J.W., Balzer K., KUh-lert H., Pehlke E., Bronold F.X., Pamperin M., Becker M., Loffhagen D., Fehske H. // Front. Chem. Sci. Eng. 2019. V. 13. P. 201.
  5. 5. Kim Y.C., Boudart M. // Langmuir. 1991. V. 7. P. 2999.
  6. 6. Booth J.P., Guaitella O., Chatterjee A., Drag C., Guerra V., Lopaev D., Zyryanov S., Rakhimova T., Voloshin D., Mankelevich Y. // 2019. V. 28. P. 055005. https://doi.org/10.1088/1361-6595/ab13e8
  7. 7. Gubarev V., Lopaev D., Zotovich A., Medvedev V., Krainov P., Astakhov D., Zyryanov S. //J. Appl. Phys. 2022. V. 132. P. 193301.
  8. 8. Lopaev D.V., Mankelevich Y.A., Kropotkin A.N., Voloshin D.G., Rakhimova T.V. // Plasma Sources Sci. Technol. 2024. V. 33. P. 085002.
  9. 9. Woodworth J.R., Riley M.E., Amatucci V.A., Hamilton T.W., Aragon B.P. // J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films. 2001. V. 19. P. 45.
  10. 10. Ziganshin I., Galiullin K.R., Lopaev D., Kirillov E.A., Rakhimov A.T. // Plasma Sources Sci. Technol. 2025. V. 34. P. 035007. https://doi.org/10.1088/1361-6595/adbc1b
  11. 11. Trukhin A.N. // J. Non Crystal Solids. 1992. V. 149. P. 32.
  12. 12. Lopaev D.V., Smirnov A.V. // Plasma Phys. Reps. 2004. V. 30. P. 882.
  13. 13. Anon NIST Atomic Spectra Database. https://doi.org/10.18434/T4W30F
  14. 14. Бровикова И.Н., Галнаскаров Э.Г., Рыбкин В.В., Бессараб А.Б. // Теплофизика высоких температур. 1998. Т. 37. С. 706.
  15. 15. Smirnov K.S. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 6929.
  16. 16. Liu H., Kaya H., Lin Y.-T., Ogrinc A., Kim S.H. // J. American Ceramic Soc. 2022. V. 105. P. 2355.
  17. 17. Ye X., Hu S., Zhang G., Yan Y., Sun Q., Hu Y. // J. Phys. Chem. C. 2025. V. 129. P. 231.
  18. 18. Macko P., Veis P., Cernogora G. // Plasma Sources Sci. Technol. 2004. V. 13. P. 251.
  19. 19. Afonso J., Vialetto L., Guerra V., Viegas P. // J. Phys. D: Appl. Phys. 2023. V. 57. P. 04LT01. https://doi.org/10.1088/1361-6463/ad039b
  20. 20. Rutigliano M., Gamallo P., Sayos R., Orlandini S., Cacciatore M. // Plasma Sources Sci. Technol. 2014. V. 23. P. 045016.
  21. 21. Karton A. //J. Phys. Chem. A. 2019. V. 123. P. 6720.
  22. 22. Butera V. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 7950.
  23. 23. Truhlar D.G., Klippenstein S.J. //J. Phys. Chem. 1996. V. 100. P. 12771. https://doi.org/10.1021/jp953748q
  24. 24. Granovsky A.A. Firefly version 8.
  25. 25. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. J. Comput. Chem. 1993. V. 14. P. 1347.
  26. 26. Beletsan O.B., Gordiy I., Lunkov S.S., Kalinin M.A., Alkhimova L.E., Nosach E.A., Ilin E.A., Bespalov A.V., Dallakyan O.L., Chamkin A.A. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 13850.
  27. 27. Bochenkova A.V., Firsov D.A., Nemukhin A.V. // Chem. Phys. Lett. 2005. V. 405. P. 165.
  28. 28. Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. // J. Chem. Information Modelling. 2019. V. 59. P. 4814.
  29. 29. Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. P. 96.
  30. 30. Becke A.D. //J. Chem. Phys. 1993. V. 98. P. 5648.
  31. 31. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  32. 32. Caldeweyher E., Mewes J.-M., Ehlert S., Grimme S. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 8499.
  33. 33. Saitow M., Becker U., Riplinger C., Valeev E.F., Neese F. // J. Chem. Phys. 2017. V. 146. P. 164105. https://doi.org/10.1063/1.4981521
  34. 34. Riplinger C., Sandhoefer B., Hansen A., Neese F. // J. Chem. Phys. 2013. V. 139. P. 134101. https://doi.org/10.1063/1.4821834
  35. 35. Karton A. // J. Phys. Chem. A. 2019. V. 123. P. 6720.
  36. 36. Neese F. // WIREs Computat. Molecular Sci. 2022. V. 12. P. e1606. https://doi.org/10.1002/wcms.1606
  37. 37. Sandler I., Chen J., Taylor M., Sharma S., Ho J. // J. Phys. Chem. A. 2021. V. 125. P. 1553.
  38. 38. Feller D., Peterson K.A. // J. Chem, Phys. 2007. V. 126. P. 114105.
  39. 39. Ramabhadran R., Raghavachari K. // J. Comput. Chem. 2015. V. 37. P. 286. https://doi.org/10.1002/jcc.24050
  40. 40. Denisov E.T. // Russian Chem. Revs. 2000. V. 69. P. 153.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека