- PII
- S30346371S0367292125040083-1
- DOI
- 10.7868/S3034637125040083
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 4
- Pages
- 428-437
- Abstract
- The probability of heterogeneous recombination of hydrogen atoms, γH , on the surface of a Pyrex tube in a direct current medium-pressure pure hydrogen (2–7 Torr) glow discharge was measured in dependence on the pressure and discharge current for two wall temperatures. It was found that there is no dependence of the recombination probability on the pressure and discharge current provided that the tube is pre-trained in a hydrogen discharge. During the tube training, γH decreases with a characteristic time to reach a steady-state value of ~30 minutes. Analysis of the possible recombination mechanism using quantum chemical methods revealed that the recombination of hydrogen atoms on the Pyrex surface is associated with OH radicals and oxygen vacancies on the surface, and the dynamics of γH can be explained by the recombination of surface OH radicals during tube training.
- Keywords
- водородная плазма тлеющий разряд постоянного тока подготовка поверхности гетерогенная рекомбинация квантовая химия DPLNO-CCSD(T) DFT
- Date of publication
- 05.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Adamovich I., Agarwal S., Ahedo E., Alves L.L., Baalrud S., Babaeva N., Bogaerts A., Bourdon A., Bruggeman P.J., Canal C. et al. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 373001. https://doi.org/10.1088/1361-6463/ac5e1c
- 2. Alves L.L., Becker M.M., van Dijk J., Gans T., Go D.B., Stapelmann K., Tennyson J., Turner M.M., Kushner M.J. // Plasma Sources Sci. Technol. 2023. V. 32. P. 023001. https://doi.org/10.1088/1361-6595/acb810
- 3. Turner M.M. // Plasma Processes Polymers. 2017. V. 14. P. 201600121. https://doi.org/10.1002/ppap.201600121
- 4. Bonitz M., Filinov A., Abraham J.W., Balzer K., KUh-lert H., Pehlke E., Bronold F.X., Pamperin M., Becker M., Loffhagen D., Fehske H. // Front. Chem. Sci. Eng. 2019. V. 13. P. 201.
- 5. Kim Y.C., Boudart M. // Langmuir. 1991. V. 7. P. 2999.
- 6. Booth J.P., Guaitella O., Chatterjee A., Drag C., Guerra V., Lopaev D., Zyryanov S., Rakhimova T., Voloshin D., Mankelevich Y. // 2019. V. 28. P. 055005. https://doi.org/10.1088/1361-6595/ab13e8
- 7. Gubarev V., Lopaev D., Zotovich A., Medvedev V., Krainov P., Astakhov D., Zyryanov S. //J. Appl. Phys. 2022. V. 132. P. 193301.
- 8. Lopaev D.V., Mankelevich Y.A., Kropotkin A.N., Voloshin D.G., Rakhimova T.V. // Plasma Sources Sci. Technol. 2024. V. 33. P. 085002.
- 9. Woodworth J.R., Riley M.E., Amatucci V.A., Hamilton T.W., Aragon B.P. // J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films. 2001. V. 19. P. 45.
- 10. Ziganshin I., Galiullin K.R., Lopaev D., Kirillov E.A., Rakhimov A.T. // Plasma Sources Sci. Technol. 2025. V. 34. P. 035007. https://doi.org/10.1088/1361-6595/adbc1b
- 11. Trukhin A.N. // J. Non Crystal Solids. 1992. V. 149. P. 32.
- 12. Lopaev D.V., Smirnov A.V. // Plasma Phys. Reps. 2004. V. 30. P. 882.
- 13. Anon NIST Atomic Spectra Database. https://doi.org/10.18434/T4W30F
- 14. Бровикова И.Н., Галнаскаров Э.Г., Рыбкин В.В., Бессараб А.Б. // Теплофизика высоких температур. 1998. Т. 37. С. 706.
- 15. Smirnov K.S. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 6929.
- 16. Liu H., Kaya H., Lin Y.-T., Ogrinc A., Kim S.H. // J. American Ceramic Soc. 2022. V. 105. P. 2355.
- 17. Ye X., Hu S., Zhang G., Yan Y., Sun Q., Hu Y. // J. Phys. Chem. C. 2025. V. 129. P. 231.
- 18. Macko P., Veis P., Cernogora G. // Plasma Sources Sci. Technol. 2004. V. 13. P. 251.
- 19. Afonso J., Vialetto L., Guerra V., Viegas P. // J. Phys. D: Appl. Phys. 2023. V. 57. P. 04LT01. https://doi.org/10.1088/1361-6463/ad039b
- 20. Rutigliano M., Gamallo P., Sayos R., Orlandini S., Cacciatore M. // Plasma Sources Sci. Technol. 2014. V. 23. P. 045016.
- 21. Karton A. //J. Phys. Chem. A. 2019. V. 123. P. 6720.
- 22. Butera V. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 7950.
- 23. Truhlar D.G., Klippenstein S.J. //J. Phys. Chem. 1996. V. 100. P. 12771. https://doi.org/10.1021/jp953748q
- 24. Granovsky A.A. Firefly version 8.
- 25. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. J. Comput. Chem. 1993. V. 14. P. 1347.
- 26. Beletsan O.B., Gordiy I., Lunkov S.S., Kalinin M.A., Alkhimova L.E., Nosach E.A., Ilin E.A., Bespalov A.V., Dallakyan O.L., Chamkin A.A. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 13850.
- 27. Bochenkova A.V., Firsov D.A., Nemukhin A.V. // Chem. Phys. Lett. 2005. V. 405. P. 165.
- 28. Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. // J. Chem. Information Modelling. 2019. V. 59. P. 4814.
- 29. Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. P. 96.
- 30. Becke A.D. //J. Chem. Phys. 1993. V. 98. P. 5648.
- 31. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- 32. Caldeweyher E., Mewes J.-M., Ehlert S., Grimme S. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 8499.
- 33. Saitow M., Becker U., Riplinger C., Valeev E.F., Neese F. // J. Chem. Phys. 2017. V. 146. P. 164105. https://doi.org/10.1063/1.4981521
- 34. Riplinger C., Sandhoefer B., Hansen A., Neese F. // J. Chem. Phys. 2013. V. 139. P. 134101. https://doi.org/10.1063/1.4821834
- 35. Karton A. // J. Phys. Chem. A. 2019. V. 123. P. 6720.
- 36. Neese F. // WIREs Computat. Molecular Sci. 2022. V. 12. P. e1606. https://doi.org/10.1002/wcms.1606
- 37. Sandler I., Chen J., Taylor M., Sharma S., Ho J. // J. Phys. Chem. A. 2021. V. 125. P. 1553.
- 38. Feller D., Peterson K.A. // J. Chem, Phys. 2007. V. 126. P. 114105.
- 39. Ramabhadran R., Raghavachari K. // J. Comput. Chem. 2015. V. 37. P. 286. https://doi.org/10.1002/jcc.24050
- 40. Denisov E.T. // Russian Chem. Revs. 2000. V. 69. P. 153.