RAS PhysicsФизика плазмы Plasma Physics Reports

  • ISSN (Print) 0367-2921
  • ISSN (Online) 3034-6371

Surface Recombination of Hydrogen Atoms on Pyrex in Medium Pressure Hydrogen Plasma

PII
S30346371S0367292125040083-1
DOI
10.7868/S3034637125040083
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 4
Pages
428-437
Abstract
The probability of heterogeneous recombination of hydrogen atoms, γH , on the surface of a Pyrex tube in a direct current medium-pressure pure hydrogen (2–7 Torr) glow discharge was measured in dependence on the pressure and discharge current for two wall temperatures. It was found that there is no dependence of the recombination probability on the pressure and discharge current provided that the tube is pre-trained in a hydrogen discharge. During the tube training, γH decreases with a characteristic time to reach a steady-state value of ~30 minutes. Analysis of the possible recombination mechanism using quantum chemical methods revealed that the recombination of hydrogen atoms on the Pyrex surface is associated with OH radicals and oxygen vacancies on the surface, and the dynamics of γH can be explained by the recombination of surface OH radicals during tube training.
Keywords
водородная плазма тлеющий разряд постоянного тока подготовка поверхности гетерогенная рекомбинация квантовая химия DPLNO-CCSD(T) DFT
Date of publication
05.05.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Adamovich I., Agarwal S., Ahedo E., Alves L.L., Baalrud S., Babaeva N., Bogaerts A., Bourdon A., Bruggeman P.J., Canal C. et al. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 373001. https://doi.org/10.1088/1361-6463/ac5e1c
  2. 2. Alves L.L., Becker M.M., van Dijk J., Gans T., Go D.B., Stapelmann K., Tennyson J., Turner M.M., Kushner M.J. // Plasma Sources Sci. Technol. 2023. V. 32. P. 023001. https://doi.org/10.1088/1361-6595/acb810
  3. 3. Turner M.M. // Plasma Processes Polymers. 2017. V. 14. P. 201600121. https://doi.org/10.1002/ppap.201600121
  4. 4. Bonitz M., Filinov A., Abraham J.W., Balzer K., KUh-lert H., Pehlke E., Bronold F.X., Pamperin M., Becker M., Loffhagen D., Fehske H. // Front. Chem. Sci. Eng. 2019. V. 13. P. 201.
  5. 5. Kim Y.C., Boudart M. // Langmuir. 1991. V. 7. P. 2999.
  6. 6. Booth J.P., Guaitella O., Chatterjee A., Drag C., Guerra V., Lopaev D., Zyryanov S., Rakhimova T., Voloshin D., Mankelevich Y. // 2019. V. 28. P. 055005. https://doi.org/10.1088/1361-6595/ab13e8
  7. 7. Gubarev V., Lopaev D., Zotovich A., Medvedev V., Krainov P., Astakhov D., Zyryanov S. //J. Appl. Phys. 2022. V. 132. P. 193301.
  8. 8. Lopaev D.V., Mankelevich Y.A., Kropotkin A.N., Voloshin D.G., Rakhimova T.V. // Plasma Sources Sci. Technol. 2024. V. 33. P. 085002.
  9. 9. Woodworth J.R., Riley M.E., Amatucci V.A., Hamilton T.W., Aragon B.P. // J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films. 2001. V. 19. P. 45.
  10. 10. Ziganshin I., Galiullin K.R., Lopaev D., Kirillov E.A., Rakhimov A.T. // Plasma Sources Sci. Technol. 2025. V. 34. P. 035007. https://doi.org/10.1088/1361-6595/adbc1b
  11. 11. Trukhin A.N. // J. Non Crystal Solids. 1992. V. 149. P. 32.
  12. 12. Lopaev D.V., Smirnov A.V. // Plasma Phys. Reps. 2004. V. 30. P. 882.
  13. 13. Anon NIST Atomic Spectra Database. https://doi.org/10.18434/T4W30F
  14. 14. Бровикова И.Н., Галнаскаров Э.Г., Рыбкин В.В., Бессараб А.Б. // Теплофизика высоких температур. 1998. Т. 37. С. 706.
  15. 15. Smirnov K.S. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 6929.
  16. 16. Liu H., Kaya H., Lin Y.-T., Ogrinc A., Kim S.H. // J. American Ceramic Soc. 2022. V. 105. P. 2355.
  17. 17. Ye X., Hu S., Zhang G., Yan Y., Sun Q., Hu Y. // J. Phys. Chem. C. 2025. V. 129. P. 231.
  18. 18. Macko P., Veis P., Cernogora G. // Plasma Sources Sci. Technol. 2004. V. 13. P. 251.
  19. 19. Afonso J., Vialetto L., Guerra V., Viegas P. // J. Phys. D: Appl. Phys. 2023. V. 57. P. 04LT01. https://doi.org/10.1088/1361-6463/ad039b
  20. 20. Rutigliano M., Gamallo P., Sayos R., Orlandini S., Cacciatore M. // Plasma Sources Sci. Technol. 2014. V. 23. P. 045016.
  21. 21. Karton A. //J. Phys. Chem. A. 2019. V. 123. P. 6720.
  22. 22. Butera V. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 7950.
  23. 23. Truhlar D.G., Klippenstein S.J. //J. Phys. Chem. 1996. V. 100. P. 12771. https://doi.org/10.1021/jp953748q
  24. 24. Granovsky A.A. Firefly version 8.
  25. 25. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. J. Comput. Chem. 1993. V. 14. P. 1347.
  26. 26. Beletsan O.B., Gordiy I., Lunkov S.S., Kalinin M.A., Alkhimova L.E., Nosach E.A., Ilin E.A., Bespalov A.V., Dallakyan O.L., Chamkin A.A. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 13850.
  27. 27. Bochenkova A.V., Firsov D.A., Nemukhin A.V. // Chem. Phys. Lett. 2005. V. 405. P. 165.
  28. 28. Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. // J. Chem. Information Modelling. 2019. V. 59. P. 4814.
  29. 29. Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. P. 96.
  30. 30. Becke A.D. //J. Chem. Phys. 1993. V. 98. P. 5648.
  31. 31. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  32. 32. Caldeweyher E., Mewes J.-M., Ehlert S., Grimme S. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 8499.
  33. 33. Saitow M., Becker U., Riplinger C., Valeev E.F., Neese F. // J. Chem. Phys. 2017. V. 146. P. 164105. https://doi.org/10.1063/1.4981521
  34. 34. Riplinger C., Sandhoefer B., Hansen A., Neese F. // J. Chem. Phys. 2013. V. 139. P. 134101. https://doi.org/10.1063/1.4821834
  35. 35. Karton A. // J. Phys. Chem. A. 2019. V. 123. P. 6720.
  36. 36. Neese F. // WIREs Computat. Molecular Sci. 2022. V. 12. P. e1606. https://doi.org/10.1002/wcms.1606
  37. 37. Sandler I., Chen J., Taylor M., Sharma S., Ho J. // J. Phys. Chem. A. 2021. V. 125. P. 1553.
  38. 38. Feller D., Peterson K.A. // J. Chem, Phys. 2007. V. 126. P. 114105.
  39. 39. Ramabhadran R., Raghavachari K. // J. Comput. Chem. 2015. V. 37. P. 286. https://doi.org/10.1002/jcc.24050
  40. 40. Denisov E.T. // Russian Chem. Revs. 2000. V. 69. P. 153.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library