ОФНФизика плазмы Plasma Physics Reports

  • ISSN (Print) 0367-2921
  • ISSN (Online) 3034-6371

ВЛИЯНИЕ ДРЕЙФОВ И ТОКОВ НА ОСНОВНЫЕ ПАРАМЕТРЫ РАБОТЫ ДИВЕРТОРА ТОКАМАКА Т-15МД

Код статьи
S30346371S0367292125020015-1
DOI
10.7868/S3034637125020015
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 2
Страницы
117-132
Аннотация
Представлены результаты первых расчетов пристеночной плазмы токамака Т-15МД в коде SOLPS-ITER с учетом влияния дрейфов и токов. Рассмотрены режимы с мощностью, проходящей через сепаратрису PSOL = 6 МВт, и различными интенсивностями газонапуска Н, соответствующими средней электронной плотности на сепаратрисе, nesep = (2–4.5) · 1019 м−3. Как и в других токамаках схожего размера, E × B-дрейф приводит к перетеканию водорода из внешнего дивертора во внутренний, что изменяет распределение нагрузки между пластинами дивертора. Также дрейфы оказывают влияние на течение углеродной примеси. Как правило, при описании зависимости от газонапуска Н, в качестве параметра, характеризующего разряд, используется либо nesep, либо полное количество водорода в обдирочном слое (Scrape off layer, SOL), Ntot. При этом эти величины рассматриваются как эквивалентные характеристики плазмы в SOL. Показано, что, с точки зрения оценки влияния дрейфов, эти величины не эквивалентны: зависимость некоторых параметров дивертора от nesep не изменяется с включением дрейфов, но может меняться зависимость от Ntot. Также видно, что дрейфы приводят к более ярко выраженному максимуму на зависимости тока насыщения от электронной плотности, Isat(nesep). Это объясняется изменениями в излучении углеродной примеси и мощности рекомбинационного источника водорода в диверторе.
Ключевые слова
пристеночная плазма токамак SOLPS моделирование детачмент Т-15МД дрейфы дивертор углерод
Дата публикации
20.01.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
26

Библиография

  1. 1. Bonnin X., Dekeyser W., Pitts R., Coster D., Voskoboynikov S., Wiesen S. // Plasma Fusion Res. 2016. V. 11. P. 1.
  2. 2. Sang C., Guo H.Y., Stangeby P.C., Lao L.L., Taylor T.S. // Nucl. Fusion. 2017. V. 57. P. 56043.
  3. 3. Sang C.F., Guo H.Y., Stangeby P.C., Wang H.Q., Wang L., Wang D.Z. // Nucl. Fusion. 2020. V. 60. P. 56011.
  4. 4. Sontag A.C., Chen X., Canik J., Leonard A., Lore J.D., Moser A.L., Murakami M., Park J.M., Petty C. // Nucl. Fusion. 2017. V. 57. P. 76025.
  5. 5. Jaervinen A.E., Allen S.L., Eldon D., Fenstermacher M.E., Groth M., Hill D.N., Lasnier C.J., Leonard A.W., McLean A.G., Porter G.D., Rognlien T.D., Samuell C.M., Wang H.Q., Watkins J.G. // Nucl. Mater. Energy. 2019. V. 19. P. 230.
  6. 6. Pan O., Lunt T., Wischmeier M., Coster D., Stroth U. and the ASDEX Upgrade team // Plasma Phys. Control. Fusion. 2020. V. 62. P. 45005.
  7. 7. Wu H., Subba F., Wischmeier M., Cavedon M., Zanino R. and the ASDEX Upgrade Team // Plasma Phys. Control. Fusion. 2021. V. 63. P. 105005.
  8. 8. Pan O., Bernert M., Lunt T., Cavedon M., Kurzan B., Wiesen S., Wischmeier M., Stroth U. and the ASDEX Upgrade Team // Nucl. Fusion. 2022. V. 63. P. 16001.
  9. 9. Scarabosio A., Eich T., Herrmann A., Sieglin B. // J. Nucl. Materials. 2013. V. 438. P. S426.
  10. 10. Kukushkin A.S., Pacher H.D., Kotov V., Pacher G.W., Reiter D. // Fusion Eng. Design. 2011. V. 86. P. 2865.
  11. 11. Pacher G.W., Pacher H.D., Janeschitz G., Kukushkin A.S. // Nucl. Fusion. 2008. V. 48. P. 105003.
  12. 12. Kukushkin A.S., Pacher H.D., Loarte A., Komarov V., Kotov V., Merola M., Pacher G.W., Reiter D. // Nucl. Fusion. 2009. V. 49. P. 075008.
  13. 13. Kukushkin A.S., Pacher H.D., Kotov V., Reiter D., Coster D., Pacher G.W. // Nucl. Fusion. 2007. V. 47. P. 698.
  14. 14. Rozhansky V.A., Voskoboynikov S.P., Kaveeva E.G., Coster D.P., Schneider R. // Nucl. Fusion. 2001. V. 41. P. 387.
  15. 15. Пшенов А.А., Кукушкин А.С., Крашенинников С.И. // Физика плазмы. 2020. Т. 46. С. 483.
  16. 16. Пшенов А.А., Кукушкин А.С. // Физика плазмы. 2018. Т. 44. С. 544.
  17. 17. Schneider R., Bonnin X., Borrass K., Coster D.P., Kastelewicz H., Reiter D., Rozhansky V.A., Braams B.J. // Contrib. Plasma Phys. 2006. V. 46. P. 3.
  18. 18. Rozhansky V., Kaveeva E., Molchanov P., Veselova I., Voskoboynikov S., Coster D., Counsell G., Kirk A., Lisgo S. // Nucl. Fusion. 2009. V. 49. P. 025007.
  19. 19. Chankin A.V., Corrigan G., Groth M., Stangeby P.C. // Plasma Phys. Control. Fusion. 2015. V. 57. P. 095002.
  20. 20. Dekeyser W., Bonnin X., Lisgo S.W., Pitts R.A., Brunner D., LaBombard B., Terry J.L. // Nucl. Mater. Energy. 2017. V. 12. P. 899.
  21. 21. Rozhansky V., Molchanov P., Veselova I., Voskoboynikov S., Kirk A., Coster D. // Nucl. Fusion. 2012. V. 52. P. 103017.
  22. 22. Wang H.Q., Watkins J.G., Guo H.Y., Groth M., Jarvinen A.E., Leonard A.W., Ren J., Thomas D.M., Boedo J. // Phys. Plasmas. 2021. V. 28. P. 052509.
  23. 23. Du H., Guo H.Y., Stangeby P.C., Bonnin X., Zheng G., Duan X., Xu M. // Nucl. Fusion. 2020. V. 60. P. 126030.
  24. 24. Senichenkov I.Y., Kaveeva E.G., Sytova E.A., Rozhansky V.A., Voskoboynikov S.P., Veselova I.Y., Coster D.P., Bonnin X., Reimold F. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 45013.
  25. 25. Kaveeva E., Rozhansky V., Veselova I., Senichenkov I., Giroud C., Pitts R.A., Wiesen S., Voskoboynikov S. // Nucl. Mater. Energy. 2021. V. 28. P. 101030.
  26. 26. Hitzler F., Wischmeier M., Reimold F., Coster D.P. and the ASDEX Upgrade Team // Plasma Phys. Control. Fusion. 2020. V. 62. P. 85013.
  27. 27. Sytova E., Pitts R.A., Kaveeva E., Bonnin X., Coster D., Rozhansky V., Senichenkov I., Veselova I., Voskoboynikov S., Reimold F. // Nucl. Mater. Energy. 2019. V. 19. P.72.
  28. 28. Rozhansky V.A., Shirobokov A.A., Kaveeva E.G. // Contributions Plasma Phys. 2024. V. 64. P. 7.
  29. 29. Rozhansky V., Kaveeva E., Senichenkov I., Sytova E., Veselova I., Voskoboynikov S., Coster D. // Contributions Plasma Phys. 2018. V. 58. P. 540.
  30. 30. Khayrutdinov R.R., Lukash V.E. // J. Comput. Phys. 1993. V. 109. P. 193.
  31. 31. Khvostenko P.P., Azizov E.A., Alfimov D.E., Belyakov V.A., Bondarchuk E.N., Chudnovsky A.N., Dokuka V.N., Kavin A.A., Khayrutdinov R.R., Khokhlov M.V., Kitaev B.A., Krasnov S.V., Maximova I.I., Labusov A.N., Lukash V.E., Mineev A.B., Muratov V.P., Nikolaev A.V., Tanchuk V.N., Tcherdakov A.K. // Fusion Eng. Design. 2015. V. 98–99. P. 1090.
  32. 32. Marenkov E.D., Kukushkin A.S., Pshenov A.A. // Nucl. Fusion. 2021. V. 61. P. 034001.
  33. 33. Garca-Rosales C., Eckstein W., Roth J. // J. Nucl. Materials. 1995. V. 218. P. 8.
  34. 34. Roth J., Preuss R., Bohmeyer W., Brezinsek S., Cambe A., Casarotto E., Doerner R., Gauthier E., Federici G., Higashijima S., Hogan J., Kallenbach A., Kirschner A., Kubo H., Layet J.M., Nakano T., Philipps V., Pospieszczyk A., Pugno R., Ruggie´ri R., Schweer B., Sergienko G., Stamp M. // Nucl. Fusion. 2004. V. 44. P. L21.
  35. 35. Kotov V., Reiter D., Pitts R.A., Jachmich S., Huber A., Coster D.P. // Plasma Phys. Control. Fusion. 2008. V. 50. P. 105012.
  36. 36. Fil A., Lipschultz B., Moulton D., Dudson B.D., Fe´vrier O., Myatra O., Theiler C., Verhaegh K., Wensing M., teams Euro M and team the TCV // Plasma Phys. Control. Fusion. 2020. V. 62. P. 35008.
  37. 37. Rozhansky V., Kaveeva E., Senichenkov I., Veselova I., Voskoboynikov S., Pitts R.A., Coster D., Giroud C., Wiesen S. // Nucl. Fusion. 2021. V. 61. P. 126073.
  38. 38. Eich T., Leonard A.W., Pitts R.A., Fundamenski W., Goldston R.J., Gray T.K., Herrmann A., Kirk A., Kallenbach A., Kardaun O., Kukushkin A.S., LaBombard B., Maingi R., Makowski M.A., Scarabosio A., Sieglin B., Terry J., Thornton A., Team AU and Contributors JET-E // Nucl. Fusion. 2013. V. 53. P. 93031.
  39. 39. Kukushkin A.S., Pacher H.D., Pacher G.W., Kotov V., Pitts R.A., Reiter D. // J. Nucl. Mater. 2013. V. 438. P. S203.
  40. 40. Kaveeva E., Rozhansky V., Senichenkov I., Sytova E., Veselova I., Voskoboynikov S., Bonnin X., Pitts R.A., Kukushkin A.S., Wiesen S., Coster D. // Nucl. Fusion. 2020. V. 60. P. 046019.
  41. 41. Krasheninnikov S.I., Kukushkin A.S., Pshenov A.A. // Phys. Plasmas. 2016. V. 23. P. 055602.
  42. 42. Marenkov E., Pshenov A. // Nucl. Fusion. 2020. V. 60. P. 026011.
  43. 43. Boedo J., McLean A.G., Rudakov D.L., Watkins J.G. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 44008.
  44. 44. Stangeby P.C. The plasma boundary of magnetic fusion devices. Institute of Physics Pub. Philadelphia, Pennsylvania, 2000.
  45. 45. Krasheninnikov S.I., Kukushkin A.S. // J. Plasma Phys. 2017. V. 83. P. 155830501.
  46. 46. Eich T., Goldston R.J., Kallenbach A., Sieglin B., Sun H.J. // Nucl. Fusion. 2018. V. 58. P. 034001.
  47. 47. Kallenbach A., Bernert M., Beurskens M., Casali L., Dunne M., Eich T., Giannone L., Herrmann A., Maraschek M., Potzel S., Reimold F., Rohde V., Schweinzer J., Viezzer E., Wischmeier M. // Nucl. Fusion. 2015. V. 55. P. 53026.
  48. 48. Брагинский С.И. // Вопросы теории плазмы. Т. 1. М.: Атомиздат, 1963. С. 183.
  49. 49. Kaveeva E., Rozhansky V. // ITER Plasma Phys. Control. Fusion. 2023. V. 65. P. 055020.
  50. 50. Jaervinen A.E., Allen S.L., Groth M., McLean A.G., Rognlien T.D., Samuell C.M., Briesemeister A., Fenstermacher M., Hill D.N., Leonard A.W., Porter G.D. // Nucl. Mater. Energy. 2017. V. 12. P. 1136.
  51. 51. Krasheninnikov S.I., Kukushkin A.S., Pistunovich V.I., Pozharov V.A., Kurchatov I.V. // Nucl. Fusion. 1987. V. 27. P. 1805.
  52. 52. Marenkov E.D., Pshenov A.A., Kukushkin A.S. // Plasma Phys. Control. Fusion. 2022. V. 64. P. 115006.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека