RAS PhysicsФизика плазмы Plasma Physics Reports

  • ISSN (Print) 0367-2921
  • ISSN (Online) 3034-6371

AUTOWAVE SWITCHING IN THE LIGHTNING CHANNEL

PII
S30346371S0367292125020099-1
DOI
10.7868/S3034637125020099
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 2
Pages
223-234
Abstract
Lightning is represented as a multistable system demonstrating the ability to self-regulation by maintaining its own electroneutrality. Within the framework of the description of the lightning channel using telegraphic equations, a nonlinear parabolic equation is obtained for the nonlinear voltage dependence of the rate of change of the plasma cord charge. The analysis of the model shows that the lightning channel alternately develops in one of two modes, each of which is characterized by damping of the longitudinal current from one end of the lightning to the other. The transition between the modes is realized by excitation of a fast switching wave. Lightning development within each mode is accompanied by recharging of the leader system sheath and movement of the point of zero charge of the sheath (called the lightning reversal point) in the direction of longitudinal current growth. The movement of the reversal point is caused by the change of the mean potential of the discharge tree in the process of sheath recharge and explains the observed dynamics of lightning transients.
Keywords
молния плазменный канал лидер молнии плазменный шнур чехол лидера точка реверса молнии асимметрия полярности автоволны
Date of publication
27.01.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Iudin D.I., Syssoev A.A., Rakov V.A. // Radiophysics and Quantum Electronics. 2021. V. 64. P. 867. https://doi.org/10.1007/s11141-022-10178-z
  2. 2. Rakov V.A. // Surveys Geophys. 2013. V. 34. № 6. P. 701. https://doi.org/10.1007/s10712-013-9230-6
  3. 3. Pantuso J.G., da Silva C.L. // J. Geophys. Res.: Atmospheres. 2024. V. 129. P. 1–24. https://doi.org/10.1029/2024JD041596
  4. 4. Zhu Y., Bitzer P., Rakov V., Stock M., Lapierre J., DiGangi E. et al. // Geophys. Res. Lett. 2021. V. 48. P. e2021GL096714. https://doi.org/10.1029/2021GL096714
  5. 5. Urbani M., Montanya` J., van der Velde O., Arcanjo M., Lo` pez J. // Geophys. Res. Lett. 2022. V. 49. P. e2021GL097272.
  6. 6. Rakov V., Uman M., Thottappillil R. J. Geophys. Res. 1994. V. 99. P. 10745.
  7. 7. Mazur V., Ruhnke L.H. // J. Geophys. Res. 1993. V. 98. P. 12913. https://doi.org/10.1029/93JD00626
  8. 8. Mazur V., Ruhnke L.H. // J. Geophys. Res. 1998. V. 103(D18). P. 23299. https://doi.org/10.1029/98JD02120
  9. 9. Mazur V., Ruhnke L.H. // J. Geophys. Res. Atmos. 2014. V. 119. P. 23299. https://doi.org/10.1002/2013JD020494
  10. 10. Qie X., Pu Y., Jiang R., Sun Z., Liu M., Zhang H., Li X., Lu G., Tian Y. J. Geophys. Res.: Atmospheres. 2017. V. 122. P. 586.
  11. 11. Qie X., Yuan S., Zhang H., Jiang R., Wu Z., Liu M., Sun Z., Pu Y., Li J., Srivastava A., Ma Z., Lu G. // Earth Planetary Phys. 2019. V. 3. P. 102.
  12. 12. da Silva C.L., Sonnenfeld R.G., Edens H.E., Krehbiel P.R., Quick M.G., Koshak W.J. // J. Geophys. Res.: Atmospheres. 2019. V. 124. P. 9442. https://doi.org/10.1029/2019JD030693
  13. 13. da Silva C.L., Winn W.P., Taylor M., Aulich G.D., Hunyady S.J., Eack K.B. et al. // Geophys. Res. Lett. 2023. V. 50. P. e2023GL105041. https://doi.org/10.1029/2023GL105041
  14. 14. Bazelyan J.M., Raizer Y.P. // Physics of lightning and lightning protection. Moscow: Fizmatlit, 2001.
  15. 15. Iudin D.I. // Atmospheric Res. 2021. V. 256. P. 1. https://doi.org/10.1016/j.atmosres.2021.105560
  16. 16. Williams E.R., Heckman S. // J. AerospaceLab. 2012. V. 5. P. 1.
  17. 17. Baum C., Baker L. New York: Hemisphere, 1990. P. 17.
  18. 18. Rakov V.A., DeCarlo B.A. // J. Geophys. Res.: Atmospheres. 1998. V. 103. P. 1879.
  19. 19. Bazelyan J.M., Raizer Y.P. Lightning Physics and Lightning Protection. Bristol, Philadelphia: Institute of Physics Publishing, 2000.
  20. 20. Raizer Y.P. Gas discharge physics. Dolgoprudny: Publishing House “Intelligence”, 2009.
  21. 21. Bazelyan E.M., Raizer Y.P., Aleksandrov N.L. // Plasma Sources Science and Technology. 2008. V. 17. P. 024015. https://doi.org/10.1088/0963-0252/17/2/024015
  22. 22. Loskutov A.Y., Michailov A.S. Introduction into synergetics. Moscow: NAUKA Publishers, 1990.
  23. 23. Gallimberti I., Bacchiega G., Bondiou-Clergerie A., Lalande P. // Comptes Rendus Physique. 2002. V. 3. P. 1335. https://doi.org/10.1016/S1631-0705 (02)01414-7
  24. 24. Marshall T.C., McCarthy M.P., Rust W.D. // J. Geophys. Res. 1995. V. 100. P. 7097. https://doi.org/10.1029/95JD00020
  25. 25. Ding Z., Rakov V.A., Zhu Y., Tran M.D. // J. Geophys. Res.: Atmospheres. 2020 V. 125. № 23. P. e2020JD033305. https://doi.org/10.1029/2020JD033305
  26. 26. Pu Y., Cummer S.A. // Geophys. Res. Lett. 2019. V. 46. P. 13556. https://doi.org/10.1029/2019GL085635
  27. 27. Jiang R., Yuan S., Qie X., Liu M., Wang D. // Geophys. Res. Lett. V. 49. https://doi.org/10.1029/2021GL096846
  28. 28. Horton R. // Geological Society of America Bulletin. 1945. V. 56(3). P. 275. https://doi.org/10.1130/0016-7606 (1945)56[275:EDOSAT]2.0.CO
  29. 29. Strahler A. // Geological Society of America Bulletin. 1952. V. 38. P. 1117.
  30. 30. Strahler A. Eos, Transactions American Geophysical Union. 1957. V. 38. P. 913.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library