- PII
- S30346371S0367292125030095-1
- DOI
- 10.7868/S3034637125030095
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 3
- Pages
- 342-348
- Abstract
- A chromatographic study of atmospheric pressure glow discharge products in a mixture of CO and CH has been carried out. The discharge has been ignited using a source at a frequency of 50 Hz and a discharge voltage of up to 10 kV. The main gas products at the discharge output are H2 (∼55%) and CO (∼40%). It is shown that the discharge properties are determined by the ratio of CO and CH consumption at the reactor input. Soot particles are formed in the discharge in addition to gas products at the same CO and CH consumption at the reactor input. The soot formation is suppressed and water vapor appears in the discharge when in the CO content in the mixture increases. The discharge current and voltage oscillograms have been analyzed and the energy required to obtain hydrogen and spent on decomposition of CO have been estimated.
- Keywords
- тлеющий разряд атмосферного давления разряд на частоте 50 Гц разряд в смеси метана и углекислого газа углекислотный риформинг метана хроматография газовых продуктов
- Date of publication
- 22.02.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 35
References
- 1. Snoeckx R., Bogaerts A. // Chemical Society Rev. 2017. V. 46. P. 5805. https://doi.org/10.1039/C6CS00066E
- 2. Adwek G., Boxiong S., Michael C., Yaolin W., Dongrui K., Chunfei W., Xin T. // Renewable Sustainable Energy Rev. 2021. V. 135. P. 109702. https://doi.org/10.1016/j.rser.2020.109702
- 3. Trenchev G., Nikiforov A., Wang W., Kolev St., Bogaerts A. // Chemical Engineering J. 2019. V. 362. P. 830. https://doi.org/10.1016/j.cej.2019.01.091
- 4. Bongers W., Bouwmeester H., Wolf B., Peeters F., Welzel S., Bekerom D., Harder N., Goede A., Graswinckel M., Groen P.W., Kopecki J., Leins M., Rooij G., Schulz A., Walker M., Sanden R. // Plasma Process Polym. 2017. V. 14. P. e1600126. https://doi.org/10.1002/ppap.201600126
- 5. Chang-jun L., Gen-hui X., Timing W. // Fuel Processing Technology. 1999. V. 58. P. 119. https://doi.org/10.1016/S0378-3820 (98)00091-5
- 6. Pacheco J., Soria G., Pacheco M., Valdivia R., Ramos F., Fr´as H., Duran M., Hidalgo M. // Int. J. Hydrogen Energy. 2015. V. 40. P. 17165. https://doi.org/10.1016/j.ijhydene.2015.08.062
- 7. Ikeda A., Hunge Y.M., Teshima K., Uetsuka H., Terashima C. // Energy Fuels. 2024. V. 38. P. 11918. https://doi.org/10.1021/acs.energyfuels.4c01214
- 8. Batukaev T.S., Bilera I.V., Krashevskaya G.V., Lebedev Yu.A., Nazarov N.A. // Plasma. 2023. V. 6. P. 115. https://doi.org/10.3390/plasma6010010
- 9. Deminsky M., Jivotov V., Potapkin B., Rusanov V. // Pure Appl. Chem. 2002. V. 74. 3. P. 413.
- 10. Бабарицкий А.И., Баранов Е.И., Дёмкин С.А., Животов В.К., Потапкин Б.И., Русанов В.Д., Рязанцев Е.И., Этиван К. // Химия Высоких Энергий. 1999. T. 33. C. 458.
- 11. Животов В.К., Потапкин Б.В., Русанов В.Д. Энциклопедия низкотемпературной плазмы. Тематический том VIII-1 .Химия низкотемпературной плазмы. / Ред. Ю.А. Лебедев, Н.А. Платэ, В.Е. Фортов. М., Янус-К, 2005. С. 4.
- 12. Amin M.H. // Prog. Petrochem. Sci. 2018. V. 2. P. 161. https://doi.org/10.31031/PPS.2018.02.000532
- 13. Usman M., Daud W.M.A.W., Abbas H.F. // Renewable Sustainable Energy Rev. 2015. V. 45. P. 710. https://doi.org/10.1016/j.rser.2015.02.026
- 14. Abiev R.Sh., Sladkovskiy D.A., Semikin K.V., Murzin D.Yu., Rebrov E.V. // Catalysts. 2020. V. 10. P. 1358. https://doi.org/10.3390/catal10111358
- 15. Vasconcelos B.R., Lavoie J.M. // Int. J. Energy Prod. Management. 2018. V. 3. P. 44. https://doi.org/10.2495/EQ-V3-N1-44-56
- 16. Курина Л.Н., Аркатова Л.А., Харламова Т.С., Галактионова Л.В., Найбороденко Ю.С., Касацкий Н.Г., Голобоков Н.Н. // Успехи современного естествознания. 2006.№4. С. 55.
- 17. Hussien A.G.S., Polychronopoulou K. // Nanomaterials. 2022. V. 12. P. 3400. https://doi.org/10.3390/nano12193400
- 18. Muraza O., Galadima A. // Int. J. Energy Res. 2015. V. 39. P. 1196. https://doi.org/10.1002/er.3295
- 19. Энгель А. Ионизованные газы. М.: Из-во физикоматематической л-ры, 1959. 224 с.
- 20. Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 361 с.
- 21. Moisan M., Pelletier J. Physics of Collisional Plasmas. Introduction to High-Frequency Discharges. Dordrecht: Springer Science + Business Media, 2012.
- 22. Yang Y. // Industrial Engineering Chemistry Res. 2002. V. 41. P. 5918. https://doi.org/10.1021/ie0202322
- 23. Jiang T., Li M., Li Y., Xu G., Liu C., Eliasson B. // J. Tianjin University. 2002. V. 35. P. 19.
- 24. Ghorbanzadeh A., Lotfalipour R., Rezaei S. // Int. J. Hydrogen Energy. 2009. V. 34. P. 293. https://doi.org/10.1016/j.ijhydene.2008.10.056
- 25. Long H., Shang S., Tao X., Yin Y., Dai X. // Int. J. Hydrogen Energy. 2008. V. 33. P. 5510. https://doi.org/10.1016/j.ijhydene.2008.05.026
- 26. Indarto A., Choi J.-W., Lee H., Song H.K. // Energy. 2006. V. 31. P. 2986. https://doi.org/10.1016/j.energy.2005.10.034
- 27. Lan T., Ran Y., Long H., Wang Y., Yin Y. // Nat. Gas Ind. 2007. V. 27. P. 129.
- 28. Goujard V., Tatibouet J.M., Batiot-Dupeyrat C. // Plasma Chem. Plasma P. 2011. V. 31. P. 315. https://doi.org/10.1007/s11090-010-9283-y
- 29. Ravari F., Fazeli S.M., Bozorgzadeh H.R., Sadeghzadeh Ahari J. // Physical Chemistry Res. 2017. V. 5. P. 395.