RAS PhysicsФизика плазмы Plasma Physics Reports

  • ISSN (Print) 0367-2921
  • ISSN (Online) 3034-6371

Helicon Plasma Based Linear Source for Studying Plasma Material Interaction: First Results

PII
S30346371S0367292125040077-1
DOI
10.7868/S3034637125040077
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 4
Pages
418
Abstract
The paper presents the results of one of the first experimental campaigns on the experimental stand HPS-2 (helicon plasma source, 2 kW) for studying the plasma-material interactions, designed and manufactured at the NRC “Kurchatov Institute”. The discharge parameters were measured using a set of probe diagnostics. Based on the obtained experimental data, the optimal values of the magnetic field and the flow rate of the working gas for this configuration of the device were selected, the possibility of obtaining plasma with a density of about 10 cm was demonstrated. The influence of the position of the RF antenna in a decreasing magnetic field relative to its maximum was studied.
Keywords
ВЧ-плазма взаимодействие плазмы с материалами плазменные источники материалы ТЯР
Date of publication
28.04.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Baldwin M.J., Nishijima D., Patino M.I., et al. // Nuclear Materials Energy. V. 36. 2023. 101477. https://doi.org/10.1016/j.nme.2023.101477
  2. 2. Behrisch R., Federici G., Kukushkin A., Reiter D. // J. Nuclear Materials. 2013. V. 313–316. P. 388–392.
  3. 3. Кралькина Е.А. // УФН. 2008. Т. 178. С. 519.
  4. 4. Черкез Д.И., Бобырь Н.П., Спицын А.В., Ананьев С.С. // ВАНТ. Сер.: Термоядерный синтез. 2020. №3. С. 101.
  5. 5. Chen F.F. // Plasma Phys. Control. Fusion. 1991. V. 33. P. 339.
  6. 6. http://www.hfpower.ru/Product_rus.htm
  7. 7. Chen F.F. // Plasma Sources Sci. Technol. 2015. V. 24. P. 014001.
  8. 8. Shinohara S. // Adv. Phys.: X. 2018. V. 3. P. 1420424.
  9. 9. Кузьмин Е.И., Шиховцев И.В. // Физика плазмы. 2021. Т. 47С. 507.
  10. 10. Chen F.F. // Plasma Sources Sci. Technol. 2009. V. 18. P. 035012.
  11. 11. Sudit I.D., Chen F.F. // Plasma Sources Sci. Technol. 1994. V. 3. P. 162.
  12. 12. Oh S.-J., Oh S.-J., Chung C.-W. // Rev. Sci. Instruments. 2010. V. 81. P. 093501.
  13. 13. Ghosh S., Chattopadhyay P.K., Ghosh J., Bora D. // Fusion Engineering Design. 2016. V. 112. P. 915.
  14. 14. Passoth E., Kudrna P., Csambal C., Behnke J.F., Tichy M., Helbig V. // J. Phys. D: Appl. Phys. 1997. V. 30. P. 1763.
  15. 15. Aikawa H. // J. Phys. Soc. Japan. 1976. V. 40. P. 1741.
  16. 16. Hayashi Y., Nishikata H., Ohno N., Kajita S., Tanaka H., Ohshima H., Seki M. // Contributions Plasma Phys. 2019. V. 59. P. e201800088.
  17. 17. https://bigenc.ru/c/magnitnaia-sborka-khal-bakha-92a63b
  18. 18. Naz M.Y., Shukrullah S., Ghaffar A., Rehman N.U. // The Sci. World J. 2014. V. 2014. P. 279868.
  19. 19. Chen F.F. // Plasma Sources Sci. Technol. 2012. V. 21. P. 055013.
  20. 20. Smith B.A., Overzet L.J. // Rev. Sci. Instruments. 1998. V. 69. P. 1372.
  21. 21. Suryana R., Tejumola T.W., Kim S., Cho M. // 2021 J. Phys.: Conf. Ser. 1876 012025
  22. 22. Nishikata H., Hayashi Y., Ohno N., Kajita S., Kubara T. // Contrib. Plasma Phys. 2016. V. 6. P. 717
  23. 23. Chen F.F. // Phys. Plasmas. 2003. V. 10. P. 2586.
  24. 24. https://www.serenips.com/RFgen.html
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library