RAS PhysicsФизика плазмы Plasma Physics Reports

  • ISSN (Print) 0367-2921
  • ISSN (Online) 3034-6371

MICROWAVE DISCHARGE SUPPORTED BY GYROTRON RADIATION ON A DIELECTRIC SUBSTRATE WITH SILVER PARTICLES IN AIR, TO DEPOSITE A METALLIZED COATING ON ABS-PLASTIC

PII
S30346371S0367292125050085-1
DOI
10.7868/S3034637125050085
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 5
Pages
550-559
Abstract
The results of experiments on the use of microwave discharge plasma, supported by microwave radiation of a pulsed (6 ms) gyrotron, for the transfer of matter from a metallic silver nanopowder to the surface of a dielectric ABS (acrylonitrile-butadiene-styrene) plastic target are presented. The experiments were carried out at atmospheric and reduced pressure (up to 50 Torr) of air at microwave radiation power density from 1.25 to 12 kW/cm. The spatial structures of microwave discharge plasma propagating near a quartz substrate with a layer of silver nanopowder were studied. It was determined that the discharge can have at least 3 types of spatial structure: a) localized microwave discharge at the points of discharge initiation; b) microwave discharge propagating through a quartz substrate; c) microwave discharge propagating along a quartz substrate. The metal layer deposited on the plastic surface was characterized using electron microscopy.
Keywords
микроволновый разряд низкотемпературная плазма
Date of publication
19.12.2025
Year of publication
2025
Number of purchasers
0
Views
35

References

  1. 1. Litvak A.G., Denisov G.G., and Glyavin M.Y. // IEEE J. Microwaves. 2021. V. 1. P. 260. https://doi.org/10.1109/JMW.2020.3030917
  2. 2. Thumm M.K.A., Denisov G.G., Sakamoto K., and Tran M.Q. // Nuclear Fusion. 2019. V. 59. P. 073001. https://doi.org/10.1088/1741-4326/ab2005
  3. 3. Batanov G.M., Kolik L.V., Konchekov E.M., Malakhov D.V., Novozhilova Yu.V., Petelin M.I., Petrov A.E., Pshenichnikov A.A., Sarksyan K.A., Skvortsova N.N., and Kharchev N.K. // Plasma Phys. Rep. 2011. V. 37. P. 381. https://doi.org/10.1134/S1063780X11040015
  4. 4. Krapivnitckaia T., Ananicheva S., Alyeva A., Denisenko A., Glyavin M., Peskov N., Sobolev D., and Zelentsov S. // Processes. 2023. V. 11. P. 1924. https://doi.org/10.3390/pr11071924
  5. 5. Bykov Yu.V., Egorov S.V., Eremeev A.G., Plotnikov I.V., Rybakov K.I., Sorokin A.A., and Kholoptsev V.V. // Tech. Phys. 2008. V. 63. P. 391.
  6. 6. Vikharev A.L., Gorbachev A.M., and Radishev D.B. // J. Phys. D: Appl. Phys. 2018. V. 52. P. 014001. https://doi.org/10.1088/1361-6463/aae3a3
  7. 7. Mansfeld D., Sintsov S., Chekmarev N., and Vodopyanov A. // J. CO2 Utilization. 2020. V. 40. P. 101197. https://doi.org/10.1016/j.jcou.2020.101197
  8. 8. Tabata K., Harada Y., Nakamura Y., Komurasaki K., Koizumi K., Kariya T., and Minami R. // J. Appl. Phys. 2020. V. 127. P. 063301. https://doi.org/10.1063/1.5144157
  9. 9. Sidorov A.V., Veselov A.P., Razin S.V., Barmashova T.V., Vodopyanov A.V., Luchinin A.G., Orlovskiy A.A., and Glyavin M.Yu. // J. Phys.: Conf. Ser. 2021. V. 2103. P. 012211. https://doi.org/10.1088/1742-6596/2103/1/012211
  10. 10. Takahashi K., and Komurasaki K. // Adv. Phys.: X. 2018. V. 3. P. 1417744. https://doi.org/10.1080/23746149.2017.1417744
  11. 11. Artem’ev K.V., Batanov G.M., Berezhetskaya N.K., Borzosekov V.D., Gritsinin S.I., Davydov A.M., Kolik L.V., Konchekov E.M., Kossyi I.A., Lebedev Yu.A. et al. // Plasma Phys. Rep. 2020. V. 46. P. 311. https://doi.org/10.1134/S1063780X20030010
  12. 12. Batanov G.M., Berezhetskaya N.K., Kossy I.A., and Magunov A.N. // Plasma Phys. Rep. 2006. V. 32. P. 525. https://doi.org/10.1134/S1063780X06060109
  13. 13. Zakletskii Z.A., and Malakhov D.V. // Plasma Phys. Rep. 2023. V. 49. P. 1228. https://doi.org/10.1134/S1063780X23601001
  14. 14. Gautam K., Gogoi D., Kongnyui T.D., Devi S., Kumar Ch., and Kumar M. // Polymers Adv. Technol. 2024. V. 35. P. 4. https://doi.org/10.1002/pat.6369
  15. 15. Juarez T., Schroer A., Schwaiger R., and Hodge A.M. // Materials Design. 2018. V. 140. P. 442. https://doi.org/10.1016/j.matdes.2017.12.005
  16. 16. Zhang H., Kang Z., Sang J., and Hirahara H. // Surface Coatings Technol. 2018. V. 340. P. 8. https://doi.org/10.1016/j.surfcoat.2018.02.005
  17. 17. Li R., Gao Y., Wang J., Xu H., Zhang Z., Wang M., and Wang H. // Appl. Surface Sci. 2025. V. 690. P. 162611. https://doi.org/10.1016/j.apsusc.2025.162611
  18. 18. Taylor W.C., Scharfman W.E., and Morita T. Advances in Microwaves. New York: Academic, 1971.
  19. 19. Tabata K., Harada Y., Nakamura Y., Komurasaki K., Koizumi H., Kariya T., and Minami R. // J. Appl. Phys. 2020. V. 127. P. 063301. https://doi.org/10.1063/1.5144157
  20. 20. Suzuki S., Hamasaki K., Takahashi M., Kato C., and Ohnish N. // Phys. Plasmas 2022. V. 29. P. 093507. https://doi.org/10.1063/5.0096363
  21. 21. Artem’ev K.V., Batanov G.M., Berezhetskaya N.K., Borzosekov V.D., Davydov A.M., Kolik L.V., Konchekov E.M., Kossyi I.A., Malakhov D.V., Moryakov I.V. et al. // Plasma Phys. Rep. 2022. V. 48. P. 170. https://doi.org/10.1134/S1063780X22020027
  22. 22. Kuzmanic I., Vujovic I., Petkovic M., and Soda J. // Prog. Additive Manuf. 2023. V. 8. P. 703. https://doi.org/10.1007/s40964-023-00411-0
  23. 23. Zhai M., Locquet A., and Citrin D. // Internat. J. Wireless Information Networks. 2022. V. 29(3). P. 269. https://doi.org/10.1007/s10776-022-00554-x
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library