- PII
- S30346371S0367292125050085-1
- DOI
- 10.7868/S3034637125050085
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 5
- Pages
- 550-559
- Abstract
- The results of experiments on the use of microwave discharge plasma, supported by microwave radiation of a pulsed (6 ms) gyrotron, for the transfer of matter from a metallic silver nanopowder to the surface of a dielectric ABS (acrylonitrile-butadiene-styrene) plastic target are presented. The experiments were carried out at atmospheric and reduced pressure (up to 50 Torr) of air at microwave radiation power density from 1.25 to 12 kW/cm. The spatial structures of microwave discharge plasma propagating near a quartz substrate with a layer of silver nanopowder were studied. It was determined that the discharge can have at least 3 types of spatial structure: a) localized microwave discharge at the points of discharge initiation; b) microwave discharge propagating through a quartz substrate; c) microwave discharge propagating along a quartz substrate. The metal layer deposited on the plastic surface was characterized using electron microscopy.
- Keywords
- микроволновый разряд низкотемпературная плазма
- Date of publication
- 19.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 35
References
- 1. Litvak A.G., Denisov G.G., and Glyavin M.Y. // IEEE J. Microwaves. 2021. V. 1. P. 260. https://doi.org/10.1109/JMW.2020.3030917
- 2. Thumm M.K.A., Denisov G.G., Sakamoto K., and Tran M.Q. // Nuclear Fusion. 2019. V. 59. P. 073001. https://doi.org/10.1088/1741-4326/ab2005
- 3. Batanov G.M., Kolik L.V., Konchekov E.M., Malakhov D.V., Novozhilova Yu.V., Petelin M.I., Petrov A.E., Pshenichnikov A.A., Sarksyan K.A., Skvortsova N.N., and Kharchev N.K. // Plasma Phys. Rep. 2011. V. 37. P. 381. https://doi.org/10.1134/S1063780X11040015
- 4. Krapivnitckaia T., Ananicheva S., Alyeva A., Denisenko A., Glyavin M., Peskov N., Sobolev D., and Zelentsov S. // Processes. 2023. V. 11. P. 1924. https://doi.org/10.3390/pr11071924
- 5. Bykov Yu.V., Egorov S.V., Eremeev A.G., Plotnikov I.V., Rybakov K.I., Sorokin A.A., and Kholoptsev V.V. // Tech. Phys. 2008. V. 63. P. 391.
- 6. Vikharev A.L., Gorbachev A.M., and Radishev D.B. // J. Phys. D: Appl. Phys. 2018. V. 52. P. 014001. https://doi.org/10.1088/1361-6463/aae3a3
- 7. Mansfeld D., Sintsov S., Chekmarev N., and Vodopyanov A. // J. CO2 Utilization. 2020. V. 40. P. 101197. https://doi.org/10.1016/j.jcou.2020.101197
- 8. Tabata K., Harada Y., Nakamura Y., Komurasaki K., Koizumi K., Kariya T., and Minami R. // J. Appl. Phys. 2020. V. 127. P. 063301. https://doi.org/10.1063/1.5144157
- 9. Sidorov A.V., Veselov A.P., Razin S.V., Barmashova T.V., Vodopyanov A.V., Luchinin A.G., Orlovskiy A.A., and Glyavin M.Yu. // J. Phys.: Conf. Ser. 2021. V. 2103. P. 012211. https://doi.org/10.1088/1742-6596/2103/1/012211
- 10. Takahashi K., and Komurasaki K. // Adv. Phys.: X. 2018. V. 3. P. 1417744. https://doi.org/10.1080/23746149.2017.1417744
- 11. Artem’ev K.V., Batanov G.M., Berezhetskaya N.K., Borzosekov V.D., Gritsinin S.I., Davydov A.M., Kolik L.V., Konchekov E.M., Kossyi I.A., Lebedev Yu.A. et al. // Plasma Phys. Rep. 2020. V. 46. P. 311. https://doi.org/10.1134/S1063780X20030010
- 12. Batanov G.M., Berezhetskaya N.K., Kossy I.A., and Magunov A.N. // Plasma Phys. Rep. 2006. V. 32. P. 525. https://doi.org/10.1134/S1063780X06060109
- 13. Zakletskii Z.A., and Malakhov D.V. // Plasma Phys. Rep. 2023. V. 49. P. 1228. https://doi.org/10.1134/S1063780X23601001
- 14. Gautam K., Gogoi D., Kongnyui T.D., Devi S., Kumar Ch., and Kumar M. // Polymers Adv. Technol. 2024. V. 35. P. 4. https://doi.org/10.1002/pat.6369
- 15. Juarez T., Schroer A., Schwaiger R., and Hodge A.M. // Materials Design. 2018. V. 140. P. 442. https://doi.org/10.1016/j.matdes.2017.12.005
- 16. Zhang H., Kang Z., Sang J., and Hirahara H. // Surface Coatings Technol. 2018. V. 340. P. 8. https://doi.org/10.1016/j.surfcoat.2018.02.005
- 17. Li R., Gao Y., Wang J., Xu H., Zhang Z., Wang M., and Wang H. // Appl. Surface Sci. 2025. V. 690. P. 162611. https://doi.org/10.1016/j.apsusc.2025.162611
- 18. Taylor W.C., Scharfman W.E., and Morita T. Advances in Microwaves. New York: Academic, 1971.
- 19. Tabata K., Harada Y., Nakamura Y., Komurasaki K., Koizumi H., Kariya T., and Minami R. // J. Appl. Phys. 2020. V. 127. P. 063301. https://doi.org/10.1063/1.5144157
- 20. Suzuki S., Hamasaki K., Takahashi M., Kato C., and Ohnish N. // Phys. Plasmas 2022. V. 29. P. 093507. https://doi.org/10.1063/5.0096363
- 21. Artem’ev K.V., Batanov G.M., Berezhetskaya N.K., Borzosekov V.D., Davydov A.M., Kolik L.V., Konchekov E.M., Kossyi I.A., Malakhov D.V., Moryakov I.V. et al. // Plasma Phys. Rep. 2022. V. 48. P. 170. https://doi.org/10.1134/S1063780X22020027
- 22. Kuzmanic I., Vujovic I., Petkovic M., and Soda J. // Prog. Additive Manuf. 2023. V. 8. P. 703. https://doi.org/10.1007/s40964-023-00411-0
- 23. Zhai M., Locquet A., and Citrin D. // Internat. J. Wireless Information Networks. 2022. V. 29(3). P. 269. https://doi.org/10.1007/s10776-022-00554-x